2019-02-24 14:02:30 -08:00
---
title: Spark in Kubernetes with OzoneFS
menu:
main:
parent: Recipes
---
<!-- -
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
Using Ozone from Apache Spark
===
This recipe shows how Ozone object store can be used from Spark using:
- OzoneFS (Hadoop compatible file system)
- Hadoop 2.7 (included in the Spark distribution)
- Kubernetes Spark scheduler
- Local spark client
## Requirements
Download latest Spark and Ozone distribution and extract them. This method is
tested with the `spark-2.4.0-bin-hadoop2.7` distribution.
You also need the following:
* A container repository to push and pull the spark+ozone images. (In this recipe we will use the dockerhub)
* A repo/name for the custom containers (in this recipe _myrepo/ozone-spark_ )
* A dedicated namespace in kubernetes (we use _yournamespace_ in this recipe)
## Create the docker image for drivers
### Create the base Spark driver/executor image
First of all create a docker image with the Spark image creator.
Execute the following from the Spark distribution
```
./bin/docker-image-tool.sh -r myrepo -t 2.4.0 build
```
_Note_: if you use Minikube add the `-m` flag to use the docker daemon of the Minikube image:
```
./bin/docker-image-tool.sh -m -r myrepo -t 2.4.0 build
```
`./bin/docker-image-tool.sh` is an official Spark tool to create container images and this step will create multiple Spark container images with the name _myrepo/spark_ . The first container will be used as a base container in the following steps.
### Customize the docker image
Create a new directory for customizing the created docker image.
Copy the `ozone-site.xml` from the cluster:
```
kubectl cp om-0:/opt/hadoop/etc/hadoop/ozone-site.xml .
```
And create a custom `core-site.xml` :
```
< configuration >
< property >
< name > fs.o3fs.impl< / name >
2019-04-05 09:05:59 -07:00
< value > org.apache.hadoop.fs.ozone.BasicOzoneFileSystem< / value >
2019-02-24 14:02:30 -08:00
< / property >
< / configuration >
```
2019-04-05 09:05:59 -07:00
_Note_: You may also use `org.apache.hadoop.fs.ozone.OzoneFileSystem` without the `Basic` prefix. The `Basic` version doesn't support FS statistics and encryption zones but can work together with older hadoop versions.
2019-02-24 14:02:30 -08:00
Copy the `ozonefs.jar` file from an ozone distribution (__use the legacy version!__)
```
kubectl cp om-0:/opt/hadoop/share/ozone/lib/hadoop-ozone-filesystem-lib-legacy-0.4.0-SNAPSHOT.jar .
```
Create a new Dockerfile and build the image:
```
FROM myrepo/spark:2.4.0
ADD core-site.xml /opt/hadoop/conf/core-site.xml
ADD ozone-site.xml /opt/hadoop/conf/ozone-site.xml
ENV HADOOP_CONF_DIR=/opt/hadoop/conf
ENV SPARK_EXTRA_CLASSPATH=/opt/hadoop/conf
ADD hadoop-ozone-filesystem-lib-legacy-0.4.0-SNAPSHOT.jar /opt/hadoop-ozone-filesystem-lib-legacy.jar
```
```
docker build -t myrepo/spark-ozone
```
For remote kubernetes cluster you may need to push it:
```
docker push myrepo/spark-ozone
```
## Create a bucket and identify the ozonefs path
Download any text file and put it to the `/tmp/alice.txt` first.
```
kubectl port-forward s3g-0 9878:9878
aws s3api --endpoint http://localhost:9878 create-bucket --bucket=test
aws s3api --endpoint http://localhost:9878 put-object --bucket test --key alice.txt --body /tmp/alice.txt
2019-03-14 21:16:59 -07:00
kubectl exec -it scm-0 ozone s3 path test
2019-02-24 14:02:30 -08:00
```
The output of the last command is something like this:
```
Volume name for S3Bucket is : s3asdlkjqiskjdsks
Ozone FileSystem Uri is : o3fs://test.s3asdlkjqiskjdsks
```
Write down the ozone filesystem uri as it should be used with the spark-submit command.
## Create service account to use
```
kubectl create serviceaccount spark -n yournamespace
2019-04-05 09:05:59 -07:00
kubectl create clusterrolebinding spark-role --clusterrole=edit --serviceaccount=yournamespace:spark --namespace=yournamespace
2019-02-24 14:02:30 -08:00
```
## Execute the job
2019-03-14 21:16:59 -07:00
Execute the following spark-submit command, but change at least the following values:
2019-02-24 14:02:30 -08:00
* the kubernetes master url (you can check your ~/.kube/config to find the actual value)
* the kubernetes namespace (yournamespace in this example)
* serviceAccountName (you can use the _spark_ value if you folllowed the previous steps)
* container.image (in this example this is myrepo/spark-ozone. This is pushed to the registry in the previous steps)
2019-03-14 21:16:59 -07:00
* location of the input file (o3fs://...), use the string which is identified earlier with the `ozone s3 path <bucketname>` command
2019-02-24 14:02:30 -08:00
```
bin/spark-submit \
--master k8s://https://kubernetes:6443 \
--deploy-mode cluster \
--name spark-word-count \
--class org.apache.spark.examples.JavaWordCount \
--conf spark.executor.instances=1 \
--conf spark.kubernetes.namespace=yournamespace \
--conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
--conf spark.kubernetes.container.image=myrepo/spark-ozone \
--conf spark.kubernetes.container.image.pullPolicy=Always \
--jars /opt/hadoop-ozone-filesystem-lib-legacy.jar \
local:///opt/spark/examples/jars/spark-examples_2.11-2.4.0.jar \
o3fs://bucket.volume/alice.txt
```
Check the available `spark-word-count-...` pods with `kubectl get pod`
Check the output of the calculation with `kubectl logs spark-word-count-1549973913699-driver`
You should see the output of the wordcount job. For example:
```
...
name: 8
William: 3
this,': 1
SOUP!': 1
`Silence: 1
`Mine: 1
ordered.: 1
considering: 3
muttering: 3
candle: 2
...
```