YARN-3816. [Aggregation] App-level aggregation and accumulation for YARN system metrics (Li Lu via sjlee)
This commit is contained in:
parent
fba7532c56
commit
39cce4e629
@ -19,12 +19,13 @@
|
|||||||
|
|
||||||
import org.apache.hadoop.classification.InterfaceAudience;
|
import org.apache.hadoop.classification.InterfaceAudience;
|
||||||
import org.apache.hadoop.classification.InterfaceStability;
|
import org.apache.hadoop.classification.InterfaceStability;
|
||||||
|
import org.apache.hadoop.yarn.exceptions.YarnRuntimeException;
|
||||||
|
|
||||||
import javax.xml.bind.annotation.XmlAccessType;
|
import javax.xml.bind.annotation.XmlAccessType;
|
||||||
import javax.xml.bind.annotation.XmlAccessorType;
|
import javax.xml.bind.annotation.XmlAccessorType;
|
||||||
import javax.xml.bind.annotation.XmlElement;
|
import javax.xml.bind.annotation.XmlElement;
|
||||||
import javax.xml.bind.annotation.XmlRootElement;
|
import javax.xml.bind.annotation.XmlRootElement;
|
||||||
import java.util.Comparator;
|
import java.util.Collections;
|
||||||
import java.util.Map;
|
import java.util.Map;
|
||||||
import java.util.TreeMap;
|
import java.util.TreeMap;
|
||||||
|
|
||||||
@ -48,13 +49,13 @@ public static enum Type {
|
|||||||
|
|
||||||
private Type type;
|
private Type type;
|
||||||
private String id;
|
private String id;
|
||||||
private Comparator<Long> reverseComparator = new Comparator<Long>() {
|
// By default, not to do any aggregation operations. This field will NOT be
|
||||||
@Override
|
// persisted (like a "transient" member).
|
||||||
public int compare(Long l1, Long l2) {
|
private TimelineMetricOperation realtimeAggregationOp
|
||||||
return l2.compareTo(l1);
|
= TimelineMetricOperation.NOP;
|
||||||
}
|
|
||||||
};
|
private TreeMap<Long, Number> values
|
||||||
private TreeMap<Long, Number> values = new TreeMap<>(reverseComparator);
|
= new TreeMap<>(Collections.reverseOrder());
|
||||||
|
|
||||||
public TimelineMetric() {
|
public TimelineMetric() {
|
||||||
this(Type.SINGLE_VALUE);
|
this(Type.SINGLE_VALUE);
|
||||||
@ -83,6 +84,26 @@ public void setId(String metricId) {
|
|||||||
this.id = metricId;
|
this.id = metricId;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get the real time aggregation operation of this metric.
|
||||||
|
*
|
||||||
|
* @return Real time aggregation operation
|
||||||
|
*/
|
||||||
|
public TimelineMetricOperation getRealtimeAggregationOp() {
|
||||||
|
return realtimeAggregationOp;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Set the real time aggregation operation of this metric.
|
||||||
|
*
|
||||||
|
* @param op A timeline metric operation that the metric should perform on
|
||||||
|
* real time aggregations
|
||||||
|
*/
|
||||||
|
public void setRealtimeAggregationOp(
|
||||||
|
final TimelineMetricOperation op) {
|
||||||
|
this.realtimeAggregationOp = op;
|
||||||
|
}
|
||||||
|
|
||||||
// required by JAXB
|
// required by JAXB
|
||||||
@InterfaceAudience.Private
|
@InterfaceAudience.Private
|
||||||
@XmlElement(name = "values")
|
@XmlElement(name = "values")
|
||||||
@ -98,8 +119,8 @@ public void setValues(Map<Long, Number> vals) {
|
|||||||
if (type == Type.SINGLE_VALUE) {
|
if (type == Type.SINGLE_VALUE) {
|
||||||
overwrite(vals);
|
overwrite(vals);
|
||||||
} else {
|
} else {
|
||||||
if (values != null) {
|
if (vals != null) {
|
||||||
this.values = new TreeMap<Long, Number>(reverseComparator);
|
this.values = new TreeMap<>(Collections.reverseOrder());
|
||||||
this.values.putAll(vals);
|
this.values.putAll(vals);
|
||||||
} else {
|
} else {
|
||||||
this.values = null;
|
this.values = null;
|
||||||
@ -166,11 +187,100 @@ public boolean equals(Object o) {
|
|||||||
|
|
||||||
@Override
|
@Override
|
||||||
public String toString() {
|
public String toString() {
|
||||||
String str = "{id:" + id + ", type:" + type;
|
return "{id: " + id + ", type: " + type +
|
||||||
if (!values.isEmpty()) {
|
", realtimeAggregationOp: " +
|
||||||
str += ", values:" + values;
|
realtimeAggregationOp + "; " + values.toString() +
|
||||||
}
|
"}";
|
||||||
str += "}";
|
|
||||||
return str;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get the latest timeline metric as single value type.
|
||||||
|
*
|
||||||
|
* @param metric Incoming timeline metric
|
||||||
|
* @return The latest metric in the incoming metric
|
||||||
|
*/
|
||||||
|
public static TimelineMetric getLatestSingleValueMetric(
|
||||||
|
TimelineMetric metric) {
|
||||||
|
if (metric.getType() == Type.SINGLE_VALUE) {
|
||||||
|
return metric;
|
||||||
|
} else {
|
||||||
|
TimelineMetric singleValueMetric = new TimelineMetric(Type.SINGLE_VALUE);
|
||||||
|
Long firstKey = metric.values.firstKey();
|
||||||
|
if (firstKey != null) {
|
||||||
|
Number firstValue = metric.values.get(firstKey);
|
||||||
|
singleValueMetric.addValue(firstKey, firstValue);
|
||||||
|
}
|
||||||
|
return singleValueMetric;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get single data timestamp of the metric.
|
||||||
|
*
|
||||||
|
* @return the single data timestamp
|
||||||
|
*/
|
||||||
|
public long getSingleDataTimestamp() {
|
||||||
|
if (this.type == Type.SINGLE_VALUE) {
|
||||||
|
if (values.size() == 0) {
|
||||||
|
throw new YarnRuntimeException("Values for this timeline metric is " +
|
||||||
|
"empty.");
|
||||||
|
} else {
|
||||||
|
return values.firstKey();
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
throw new YarnRuntimeException("Type for this timeline metric is not " +
|
||||||
|
"SINGLE_VALUE.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get single data value of the metric.
|
||||||
|
*
|
||||||
|
* @return the single data value
|
||||||
|
*/
|
||||||
|
public Number getSingleDataValue() {
|
||||||
|
if (this.type == Type.SINGLE_VALUE) {
|
||||||
|
if (values.size() == 0) {
|
||||||
|
return null;
|
||||||
|
} else {
|
||||||
|
return values.get(values.firstKey());
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
throw new YarnRuntimeException("Type for this timeline metric is not " +
|
||||||
|
"SINGLE_VALUE.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Aggregate an incoming metric to the base aggregated metric with the given
|
||||||
|
* operation state in a stateless fashion. The assumption here is
|
||||||
|
* baseAggregatedMetric and latestMetric should be single value data if not
|
||||||
|
* null.
|
||||||
|
*
|
||||||
|
* @param incomingMetric Incoming timeline metric to aggregate
|
||||||
|
* @param baseAggregatedMetric Base timeline metric
|
||||||
|
* @return Result metric after aggregation
|
||||||
|
*/
|
||||||
|
public static TimelineMetric aggregateTo(TimelineMetric incomingMetric,
|
||||||
|
TimelineMetric baseAggregatedMetric) {
|
||||||
|
return aggregateTo(incomingMetric, baseAggregatedMetric, null);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Aggregate an incoming metric to the base aggregated metric with the given
|
||||||
|
* operation state. The assumption here is baseAggregatedMetric and
|
||||||
|
* latestMetric should be single value data if not null.
|
||||||
|
*
|
||||||
|
* @param incomingMetric Incoming timeline metric to aggregate
|
||||||
|
* @param baseAggregatedMetric Base timeline metric
|
||||||
|
* @param state Operation state
|
||||||
|
* @return Result metric after aggregation
|
||||||
|
*/
|
||||||
|
public static TimelineMetric aggregateTo(TimelineMetric incomingMetric,
|
||||||
|
TimelineMetric baseAggregatedMetric, Map<Object, Object> state) {
|
||||||
|
TimelineMetricOperation operation
|
||||||
|
= incomingMetric.getRealtimeAggregationOp();
|
||||||
|
return operation.aggregate(incomingMetric, baseAggregatedMetric, state);
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -0,0 +1,115 @@
|
|||||||
|
/*
|
||||||
|
* Licensed to the Apache Software Foundation (ASF) under one
|
||||||
|
* or more contributor license agreements. See the NOTICE file
|
||||||
|
* distributed with this work for additional information
|
||||||
|
* regarding copyright ownership. The ASF licenses this file
|
||||||
|
* to you under the Apache License, Version 2.0 (the
|
||||||
|
* "License"); you may not use this file except in compliance
|
||||||
|
* with the License. You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
package org.apache.hadoop.yarn.api.records.timelineservice;
|
||||||
|
|
||||||
|
import org.apache.hadoop.yarn.exceptions.YarnRuntimeException;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A calculator for timeline metrics.
|
||||||
|
*/
|
||||||
|
public final class TimelineMetricCalculator {
|
||||||
|
|
||||||
|
private TimelineMetricCalculator() {
|
||||||
|
// do nothing.
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compare two not-null numbers.
|
||||||
|
* @param n1 Number n1
|
||||||
|
* @param n2 Number n2
|
||||||
|
* @return 0 if n1 equals n2, a negative int if n1 is less than n2, a
|
||||||
|
* positive int otherwise.
|
||||||
|
*/
|
||||||
|
public static int compare(Number n1, Number n2) {
|
||||||
|
if (n1 == null || n2 == null) {
|
||||||
|
throw new YarnRuntimeException(
|
||||||
|
"Number to be compared shouldn't be null.");
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n1 instanceof Integer || n1 instanceof Long) {
|
||||||
|
if (n1.longValue() == n2.longValue()) {
|
||||||
|
return 0;
|
||||||
|
} else {
|
||||||
|
return (n1.longValue() < n2.longValue()) ? -1 : 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n1 instanceof Float || n1 instanceof Double) {
|
||||||
|
if (n1.doubleValue() == n2.doubleValue()) {
|
||||||
|
return 0;
|
||||||
|
} else {
|
||||||
|
return (n1.doubleValue() < n2.doubleValue()) ? -1 : 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO throw warnings/exceptions for other types of number.
|
||||||
|
throw new YarnRuntimeException("Unsupported types for number comparison: "
|
||||||
|
+ n1.getClass().getName() + ", " + n2.getClass().getName());
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Subtract operation between two Numbers.
|
||||||
|
* @param n1 Number n1
|
||||||
|
* @param n2 Number n2
|
||||||
|
* @return Number represent to (n1 - n2).
|
||||||
|
*/
|
||||||
|
public static Number sub(Number n1, Number n2) {
|
||||||
|
if (n1 == null) {
|
||||||
|
throw new YarnRuntimeException(
|
||||||
|
"Number to be subtracted shouldn't be null.");
|
||||||
|
} else if (n2 == null) {
|
||||||
|
return n1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n1 instanceof Integer || n1 instanceof Long) {
|
||||||
|
return n1.longValue() - n2.longValue();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n1 instanceof Float || n1 instanceof Double) {
|
||||||
|
return n1.doubleValue() - n2.doubleValue();
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO throw warnings/exceptions for other types of number.
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sum up two Numbers.
|
||||||
|
* @param n1 Number n1
|
||||||
|
* @param n2 Number n2
|
||||||
|
* @return Number represent to (n1 + n2).
|
||||||
|
*/
|
||||||
|
public static Number sum(Number n1, Number n2) {
|
||||||
|
if (n1 == null) {
|
||||||
|
return n2;
|
||||||
|
} else if (n2 == null) {
|
||||||
|
return n1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n1 instanceof Integer || n1 instanceof Long) {
|
||||||
|
return n1.longValue() + n2.longValue();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n1 instanceof Float || n1 instanceof Double) {
|
||||||
|
return n1.doubleValue() + n2.doubleValue();
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO throw warnings/exceptions for other types of number.
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,167 @@
|
|||||||
|
/*
|
||||||
|
* Licensed to the Apache Software Foundation (ASF) under one
|
||||||
|
* or more contributor license agreements. See the NOTICE file
|
||||||
|
* distributed with this work for additional information
|
||||||
|
* regarding copyright ownership. The ASF licenses this file
|
||||||
|
* to you under the Apache License, Version 2.0 (the
|
||||||
|
* "License"); you may not use this file except in compliance
|
||||||
|
* with the License. You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package org.apache.hadoop.yarn.api.records.timelineservice;
|
||||||
|
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Aggregation operations.
|
||||||
|
*/
|
||||||
|
public enum TimelineMetricOperation {
|
||||||
|
NOP("NOP") {
|
||||||
|
/**
|
||||||
|
* Do nothing on the base metric.
|
||||||
|
*
|
||||||
|
* @param incoming Metric a
|
||||||
|
* @param base Metric b
|
||||||
|
* @param state Operation state (not used)
|
||||||
|
* @return Metric b
|
||||||
|
*/
|
||||||
|
@Override
|
||||||
|
public TimelineMetric exec(TimelineMetric incoming,
|
||||||
|
TimelineMetric base, Map<Object, Object> state) {
|
||||||
|
return base;
|
||||||
|
}
|
||||||
|
},
|
||||||
|
MAX("MAX") {
|
||||||
|
/**
|
||||||
|
* Keep the greater value of incoming and base. Stateless operation.
|
||||||
|
*
|
||||||
|
* @param incoming Metric a
|
||||||
|
* @param base Metric b
|
||||||
|
* @param state Operation state (not used)
|
||||||
|
* @return the greater value of a and b
|
||||||
|
*/
|
||||||
|
@Override
|
||||||
|
public TimelineMetric exec(TimelineMetric incoming,
|
||||||
|
TimelineMetric base, Map<Object, Object> state) {
|
||||||
|
if (base == null) {
|
||||||
|
return incoming;
|
||||||
|
}
|
||||||
|
Number incomingValue = incoming.getSingleDataValue();
|
||||||
|
Number aggregateValue = base.getSingleDataValue();
|
||||||
|
if (aggregateValue == null) {
|
||||||
|
aggregateValue = Long.MIN_VALUE;
|
||||||
|
}
|
||||||
|
if (TimelineMetricCalculator.compare(incomingValue, aggregateValue) > 0) {
|
||||||
|
base.addValue(incoming.getSingleDataTimestamp(), incomingValue);
|
||||||
|
}
|
||||||
|
return base;
|
||||||
|
}
|
||||||
|
},
|
||||||
|
REPLACE("REPLACE") {
|
||||||
|
/**
|
||||||
|
* Replace the base metric with the incoming value. Stateless operation.
|
||||||
|
*
|
||||||
|
* @param incoming Metric a
|
||||||
|
* @param base Metric b
|
||||||
|
* @param state Operation state (not used)
|
||||||
|
* @return Metric a
|
||||||
|
*/
|
||||||
|
@Override
|
||||||
|
public TimelineMetric exec(TimelineMetric incoming,
|
||||||
|
TimelineMetric base,
|
||||||
|
Map<Object, Object> state) {
|
||||||
|
return incoming;
|
||||||
|
}
|
||||||
|
},
|
||||||
|
SUM("SUM") {
|
||||||
|
/**
|
||||||
|
* Return the sum of the incoming metric and the base metric if the
|
||||||
|
* operation is stateless. For stateful operations, also subtract the
|
||||||
|
* value of the timeline metric mapped to the PREV_METRIC_STATE_KEY
|
||||||
|
* in the state object.
|
||||||
|
*
|
||||||
|
* @param incoming Metric a
|
||||||
|
* @param base Metric b
|
||||||
|
* @param state Operation state (PREV_METRIC_STATE_KEY's value as Metric p)
|
||||||
|
* @return A metric with value a + b - p
|
||||||
|
*/
|
||||||
|
@Override
|
||||||
|
public TimelineMetric exec(TimelineMetric incoming, TimelineMetric base,
|
||||||
|
Map<Object, Object> state) {
|
||||||
|
if (base == null) {
|
||||||
|
return incoming;
|
||||||
|
}
|
||||||
|
Number incomingValue = incoming.getSingleDataValue();
|
||||||
|
Number aggregateValue = base.getSingleDataValue();
|
||||||
|
Number result
|
||||||
|
= TimelineMetricCalculator.sum(incomingValue, aggregateValue);
|
||||||
|
|
||||||
|
// If there are previous value in the state, we will take it off from the
|
||||||
|
// sum
|
||||||
|
if (state != null) {
|
||||||
|
Object prevMetric = state.get(PREV_METRIC_STATE_KEY);
|
||||||
|
if (prevMetric instanceof TimelineMetric) {
|
||||||
|
result = TimelineMetricCalculator.sub(result,
|
||||||
|
((TimelineMetric) prevMetric).getSingleDataValue());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
base.addValue(incoming.getSingleDataTimestamp(), result);
|
||||||
|
return base;
|
||||||
|
}
|
||||||
|
},
|
||||||
|
AVG("AVERAGE") {
|
||||||
|
/**
|
||||||
|
* Return the average value of the incoming metric and the base metric,
|
||||||
|
* with a given state. Not supported yet.
|
||||||
|
*
|
||||||
|
* @param incoming Metric a
|
||||||
|
* @param base Metric b
|
||||||
|
* @param state Operation state
|
||||||
|
* @return Not finished yet
|
||||||
|
*/
|
||||||
|
@Override
|
||||||
|
public TimelineMetric exec(TimelineMetric incoming, TimelineMetric base,
|
||||||
|
Map<Object, Object> state) {
|
||||||
|
// Not supported yet
|
||||||
|
throw new UnsupportedOperationException(
|
||||||
|
"Unsupported aggregation operation: AVERAGE");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
public static final String PREV_METRIC_STATE_KEY = "PREV_METRIC";
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Perform the aggregation operation.
|
||||||
|
*
|
||||||
|
* @param incoming Incoming metric
|
||||||
|
* @param aggregate Base aggregation metric
|
||||||
|
* @param state Operation state
|
||||||
|
* @return Result metric for this aggregation operation
|
||||||
|
*/
|
||||||
|
public TimelineMetric aggregate(TimelineMetric incoming,
|
||||||
|
TimelineMetric aggregate, Map<Object, Object> state) {
|
||||||
|
return exec(incoming, aggregate, state);
|
||||||
|
}
|
||||||
|
|
||||||
|
private final String opName;
|
||||||
|
|
||||||
|
TimelineMetricOperation(String opString) {
|
||||||
|
opName = opString;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public String toString() {
|
||||||
|
return this.opName;
|
||||||
|
}
|
||||||
|
|
||||||
|
abstract TimelineMetric exec(TimelineMetric incoming, TimelineMetric base,
|
||||||
|
Map<Object, Object> state);
|
||||||
|
}
|
@ -0,0 +1,100 @@
|
|||||||
|
/**
|
||||||
|
* Licensed to the Apache Software Foundation (ASF) under one
|
||||||
|
* or more contributor license agreements. See the NOTICE file
|
||||||
|
* distributed with this work for additional information
|
||||||
|
* regarding copyright ownership. The ASF licenses this file
|
||||||
|
* to you under the Apache License, Version 2.0 (the
|
||||||
|
* "License"); you may not use this file except in compliance
|
||||||
|
* with the License. You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
package org.apache.hadoop.yarn.api.records.timelineservice;
|
||||||
|
|
||||||
|
import static org.junit.Assert.assertEquals;
|
||||||
|
import static org.junit.Assert.fail;
|
||||||
|
|
||||||
|
import java.util.HashMap;
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric.Type;
|
||||||
|
|
||||||
|
import org.junit.Test;
|
||||||
|
|
||||||
|
public class TestTimelineMetric {
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testTimelineMetricAggregation() {
|
||||||
|
long ts = System.currentTimeMillis();
|
||||||
|
// single_value metric add against null metric
|
||||||
|
TimelineMetric m1 = getSingleValueMetric("MEGA_BYTES_MILLIS",
|
||||||
|
TimelineMetricOperation.SUM, ts, 10000L);
|
||||||
|
TimelineMetric aggregatedMetric = TimelineMetric.aggregateTo(m1, null);
|
||||||
|
assertEquals(10000L, aggregatedMetric.getSingleDataValue());
|
||||||
|
|
||||||
|
TimelineMetric m2 = getSingleValueMetric("MEGA_BYTES_MILLIS",
|
||||||
|
TimelineMetricOperation.SUM, ts, 20000L);
|
||||||
|
aggregatedMetric = TimelineMetric.aggregateTo(m2, aggregatedMetric);
|
||||||
|
assertEquals(30000L, aggregatedMetric.getSingleDataValue());
|
||||||
|
|
||||||
|
// stateful sum test
|
||||||
|
Map<Object, Object> state = new HashMap<>();
|
||||||
|
state.put(TimelineMetricOperation.PREV_METRIC_STATE_KEY, m2);
|
||||||
|
TimelineMetric m2New = getSingleValueMetric("MEGA_BYTES_MILLIS",
|
||||||
|
TimelineMetricOperation.SUM, ts, 10000L);
|
||||||
|
aggregatedMetric = TimelineMetric.aggregateTo(m2New, aggregatedMetric,
|
||||||
|
state);
|
||||||
|
assertEquals(20000L, aggregatedMetric.getSingleDataValue());
|
||||||
|
|
||||||
|
// single_value metric max against single_value metric
|
||||||
|
TimelineMetric m3 = getSingleValueMetric("TRANSFER_RATE",
|
||||||
|
TimelineMetricOperation.MAX, ts, 150L);
|
||||||
|
TimelineMetric aggregatedMax = TimelineMetric.aggregateTo(m3, null);
|
||||||
|
assertEquals(150L, aggregatedMax.getSingleDataValue());
|
||||||
|
|
||||||
|
TimelineMetric m4 = getSingleValueMetric("TRANSFER_RATE",
|
||||||
|
TimelineMetricOperation.MAX, ts, 170L);
|
||||||
|
aggregatedMax = TimelineMetric.aggregateTo(m4, aggregatedMax);
|
||||||
|
assertEquals(170L, aggregatedMax.getSingleDataValue());
|
||||||
|
|
||||||
|
// single_value metric avg against single_value metric
|
||||||
|
TimelineMetric m5 = getSingleValueMetric("TRANSFER_RATE",
|
||||||
|
TimelineMetricOperation.AVG, ts, 150L);
|
||||||
|
try {
|
||||||
|
TimelineMetric.aggregateTo(m5, null);
|
||||||
|
fail("Taking average among metrics is not supported! ");
|
||||||
|
} catch (UnsupportedOperationException e) {
|
||||||
|
// Expected
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
private static TimelineMetric getSingleValueMetric(String id,
|
||||||
|
TimelineMetricOperation op, long timestamp, long value) {
|
||||||
|
TimelineMetric m = new TimelineMetric();
|
||||||
|
m.setId(id);
|
||||||
|
m.setType(Type.SINGLE_VALUE);
|
||||||
|
m.setRealtimeAggregationOp(op);
|
||||||
|
Map<Long, Number> metricValues = new HashMap<Long, Number>();
|
||||||
|
metricValues.put(timestamp, value);
|
||||||
|
m.setValues(metricValues);
|
||||||
|
return m;
|
||||||
|
}
|
||||||
|
|
||||||
|
private static TimelineMetric getTimeSeriesMetric(String id,
|
||||||
|
TimelineMetricOperation op, Map<Long, Number> metricValues) {
|
||||||
|
TimelineMetric m = new TimelineMetric();
|
||||||
|
m.setId(id);
|
||||||
|
m.setType(Type.TIME_SERIES);
|
||||||
|
m.setRealtimeAggregationOp(op);
|
||||||
|
m.setValues(metricValues);
|
||||||
|
return m;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
@ -64,13 +64,13 @@ public void testTimelineEntities() throws Exception {
|
|||||||
metric1.getValues().entrySet().iterator();
|
metric1.getValues().entrySet().iterator();
|
||||||
Map.Entry<Long, Number> entry = itr.next();
|
Map.Entry<Long, Number> entry = itr.next();
|
||||||
Assert.assertEquals(new Long(3L), entry.getKey());
|
Assert.assertEquals(new Long(3L), entry.getKey());
|
||||||
Assert.assertEquals(new Double(3.0D), entry.getValue());
|
Assert.assertEquals(3.0D, entry.getValue());
|
||||||
entry = itr.next();
|
entry = itr.next();
|
||||||
Assert.assertEquals(new Long(2L), entry.getKey());
|
Assert.assertEquals(new Long(2L), entry.getKey());
|
||||||
Assert.assertEquals(new Integer(2), entry.getValue());
|
Assert.assertEquals(2, entry.getValue());
|
||||||
entry = itr.next();
|
entry = itr.next();
|
||||||
Assert.assertEquals(new Long(1L), entry.getKey());
|
Assert.assertEquals(new Long(1L), entry.getKey());
|
||||||
Assert.assertEquals(new Float(1.0F), entry.getValue());
|
Assert.assertEquals(1.0F, entry.getValue());
|
||||||
Assert.assertFalse(itr.hasNext());
|
Assert.assertFalse(itr.hasNext());
|
||||||
entity.addMetric(metric1);
|
entity.addMetric(metric1);
|
||||||
|
|
||||||
|
@ -33,6 +33,7 @@
|
|||||||
import org.apache.hadoop.yarn.api.records.NodeId;
|
import org.apache.hadoop.yarn.api.records.NodeId;
|
||||||
import org.apache.hadoop.yarn.api.records.Resource;
|
import org.apache.hadoop.yarn.api.records.Resource;
|
||||||
import org.apache.hadoop.yarn.api.records.timelineservice.ContainerEntity;
|
import org.apache.hadoop.yarn.api.records.timelineservice.ContainerEntity;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetricOperation;
|
||||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity.Identifier;
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity.Identifier;
|
||||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntityType;
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntityType;
|
||||||
@ -119,12 +120,15 @@ public void reportContainerResourceUsage(Container container, Long pmemUsage,
|
|||||||
if (pmemUsage != ResourceCalculatorProcessTree.UNAVAILABLE) {
|
if (pmemUsage != ResourceCalculatorProcessTree.UNAVAILABLE) {
|
||||||
TimelineMetric memoryMetric = new TimelineMetric();
|
TimelineMetric memoryMetric = new TimelineMetric();
|
||||||
memoryMetric.setId(ContainerMetric.MEMORY.toString());
|
memoryMetric.setId(ContainerMetric.MEMORY.toString());
|
||||||
|
memoryMetric.setRealtimeAggregationOp(TimelineMetricOperation.SUM);
|
||||||
memoryMetric.addValue(currentTimeMillis, pmemUsage);
|
memoryMetric.addValue(currentTimeMillis, pmemUsage);
|
||||||
entity.addMetric(memoryMetric);
|
entity.addMetric(memoryMetric);
|
||||||
}
|
}
|
||||||
if (cpuUsagePercentPerCore != ResourceCalculatorProcessTree.UNAVAILABLE) {
|
if (cpuUsagePercentPerCore != ResourceCalculatorProcessTree.UNAVAILABLE) {
|
||||||
TimelineMetric cpuMetric = new TimelineMetric();
|
TimelineMetric cpuMetric = new TimelineMetric();
|
||||||
cpuMetric.setId(ContainerMetric.CPU.toString());
|
cpuMetric.setId(ContainerMetric.CPU.toString());
|
||||||
|
// TODO: support average
|
||||||
|
cpuMetric.setRealtimeAggregationOp(TimelineMetricOperation.SUM);
|
||||||
cpuMetric.addValue(currentTimeMillis,
|
cpuMetric.addValue(currentTimeMillis,
|
||||||
Math.round(cpuUsagePercentPerCore));
|
Math.round(cpuUsagePercentPerCore));
|
||||||
entity.addMetric(cpuMetric);
|
entity.addMetric(cpuMetric);
|
||||||
|
@ -18,15 +18,26 @@
|
|||||||
|
|
||||||
package org.apache.hadoop.yarn.server.timelineservice.collector;
|
package org.apache.hadoop.yarn.server.timelineservice.collector;
|
||||||
|
|
||||||
|
import com.google.common.util.concurrent.ThreadFactoryBuilder;
|
||||||
|
import org.apache.commons.logging.Log;
|
||||||
|
import org.apache.commons.logging.LogFactory;
|
||||||
import org.apache.hadoop.classification.InterfaceAudience.Private;
|
import org.apache.hadoop.classification.InterfaceAudience.Private;
|
||||||
import org.apache.hadoop.classification.InterfaceStability.Unstable;
|
import org.apache.hadoop.classification.InterfaceStability.Unstable;
|
||||||
import org.apache.hadoop.conf.Configuration;
|
import org.apache.hadoop.conf.Configuration;
|
||||||
import org.apache.hadoop.security.UserGroupInformation;
|
import org.apache.hadoop.security.UserGroupInformation;
|
||||||
import org.apache.hadoop.yarn.api.records.ApplicationId;
|
import org.apache.hadoop.yarn.api.records.ApplicationId;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntityType;
|
||||||
import org.apache.hadoop.yarn.conf.YarnConfiguration;
|
import org.apache.hadoop.yarn.conf.YarnConfiguration;
|
||||||
|
|
||||||
import com.google.common.base.Preconditions;
|
import com.google.common.base.Preconditions;
|
||||||
|
|
||||||
|
import java.util.HashSet;
|
||||||
|
import java.util.Set;
|
||||||
|
import java.util.concurrent.ScheduledThreadPoolExecutor;
|
||||||
|
import java.util.concurrent.TimeUnit;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Service that handles writes to the timeline service and writes them to the
|
* Service that handles writes to the timeline service and writes them to the
|
||||||
* backing storage for a given YARN application.
|
* backing storage for a given YARN application.
|
||||||
@ -36,8 +47,16 @@
|
|||||||
@Private
|
@Private
|
||||||
@Unstable
|
@Unstable
|
||||||
public class AppLevelTimelineCollector extends TimelineCollector {
|
public class AppLevelTimelineCollector extends TimelineCollector {
|
||||||
|
private static final Log LOG = LogFactory.getLog(TimelineCollector.class);
|
||||||
|
|
||||||
|
private final static int AGGREGATION_EXECUTOR_NUM_THREADS = 1;
|
||||||
|
private final static int AGGREGATION_EXECUTOR_EXEC_INTERVAL_SECS = 15;
|
||||||
|
private static Set<String> entityTypesSkipAggregation
|
||||||
|
= initializeSkipSet();
|
||||||
|
|
||||||
private final ApplicationId appId;
|
private final ApplicationId appId;
|
||||||
private final TimelineCollectorContext context;
|
private final TimelineCollectorContext context;
|
||||||
|
private ScheduledThreadPoolExecutor appAggregationExecutor;
|
||||||
|
|
||||||
public AppLevelTimelineCollector(ApplicationId appId) {
|
public AppLevelTimelineCollector(ApplicationId appId) {
|
||||||
super(AppLevelTimelineCollector.class.getName() + " - " + appId.toString());
|
super(AppLevelTimelineCollector.class.getName() + " - " + appId.toString());
|
||||||
@ -46,6 +65,14 @@ public AppLevelTimelineCollector(ApplicationId appId) {
|
|||||||
context = new TimelineCollectorContext();
|
context = new TimelineCollectorContext();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
private static Set<String> initializeSkipSet() {
|
||||||
|
Set<String> result = new HashSet<>();
|
||||||
|
result.add(TimelineEntityType.YARN_APPLICATION.toString());
|
||||||
|
result.add(TimelineEntityType.YARN_FLOW_RUN.toString());
|
||||||
|
result.add(TimelineEntityType.YARN_FLOW_ACTIVITY.toString());
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
protected void serviceInit(Configuration conf) throws Exception {
|
protected void serviceInit(Configuration conf) throws Exception {
|
||||||
context.setClusterId(conf.get(YarnConfiguration.RM_CLUSTER_ID,
|
context.setClusterId(conf.get(YarnConfiguration.RM_CLUSTER_ID,
|
||||||
@ -60,11 +87,25 @@ protected void serviceInit(Configuration conf) throws Exception {
|
|||||||
|
|
||||||
@Override
|
@Override
|
||||||
protected void serviceStart() throws Exception {
|
protected void serviceStart() throws Exception {
|
||||||
|
// Launch the aggregation thread
|
||||||
|
appAggregationExecutor = new ScheduledThreadPoolExecutor(
|
||||||
|
AppLevelTimelineCollector.AGGREGATION_EXECUTOR_NUM_THREADS,
|
||||||
|
new ThreadFactoryBuilder()
|
||||||
|
.setNameFormat("TimelineCollector Aggregation thread #%d")
|
||||||
|
.build());
|
||||||
|
appAggregationExecutor.scheduleAtFixedRate(new AppLevelAggregator(), 0,
|
||||||
|
AppLevelTimelineCollector.AGGREGATION_EXECUTOR_EXEC_INTERVAL_SECS,
|
||||||
|
TimeUnit.SECONDS);
|
||||||
super.serviceStart();
|
super.serviceStart();
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
protected void serviceStop() throws Exception {
|
protected void serviceStop() throws Exception {
|
||||||
|
appAggregationExecutor.shutdown();
|
||||||
|
if (!appAggregationExecutor.awaitTermination(10, TimeUnit.SECONDS)) {
|
||||||
|
LOG.info("App-level aggregator shutdown timed out, shutdown now. ");
|
||||||
|
appAggregationExecutor.shutdownNow();
|
||||||
|
}
|
||||||
super.serviceStop();
|
super.serviceStop();
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -73,4 +114,35 @@ public TimelineCollectorContext getTimelineEntityContext() {
|
|||||||
return context;
|
return context;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
protected Set<String> getEntityTypesSkipAggregation() {
|
||||||
|
return entityTypesSkipAggregation;
|
||||||
|
}
|
||||||
|
|
||||||
|
private class AppLevelAggregator implements Runnable {
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public void run() {
|
||||||
|
if (LOG.isDebugEnabled()) {
|
||||||
|
LOG.debug("App-level real-time aggregating");
|
||||||
|
}
|
||||||
|
try {
|
||||||
|
TimelineCollectorContext currContext = getTimelineEntityContext();
|
||||||
|
TimelineEntity resultEntity = TimelineCollector.aggregateWithoutGroupId(
|
||||||
|
getAggregationGroups(), currContext.getAppId(),
|
||||||
|
TimelineEntityType.YARN_APPLICATION.toString());
|
||||||
|
TimelineEntities entities = new TimelineEntities();
|
||||||
|
entities.addEntity(resultEntity);
|
||||||
|
getWriter().write(currContext.getClusterId(), currContext.getUserId(),
|
||||||
|
currContext.getFlowName(), currContext.getFlowVersion(),
|
||||||
|
currContext.getFlowRunId(), currContext.getAppId(), entities);
|
||||||
|
} catch (Exception e) {
|
||||||
|
LOG.error("Error aggregating timeline metrics", e);
|
||||||
|
}
|
||||||
|
if (LOG.isDebugEnabled()) {
|
||||||
|
LOG.debug("App-level real-time aggregation complete");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -19,6 +19,12 @@
|
|||||||
package org.apache.hadoop.yarn.server.timelineservice.collector;
|
package org.apache.hadoop.yarn.server.timelineservice.collector;
|
||||||
|
|
||||||
import java.io.IOException;
|
import java.io.IOException;
|
||||||
|
import java.util.HashMap;
|
||||||
|
import java.util.HashSet;
|
||||||
|
import java.util.Map;
|
||||||
|
import java.util.Set;
|
||||||
|
import java.util.concurrent.ConcurrentHashMap;
|
||||||
|
import java.util.concurrent.ConcurrentMap;
|
||||||
|
|
||||||
import org.apache.commons.logging.Log;
|
import org.apache.commons.logging.Log;
|
||||||
import org.apache.commons.logging.LogFactory;
|
import org.apache.commons.logging.LogFactory;
|
||||||
@ -27,7 +33,10 @@
|
|||||||
import org.apache.hadoop.conf.Configuration;
|
import org.apache.hadoop.conf.Configuration;
|
||||||
import org.apache.hadoop.security.UserGroupInformation;
|
import org.apache.hadoop.security.UserGroupInformation;
|
||||||
import org.apache.hadoop.service.CompositeService;
|
import org.apache.hadoop.service.CompositeService;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetricOperation;
|
||||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric;
|
||||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineWriteResponse;
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineWriteResponse;
|
||||||
import org.apache.hadoop.yarn.server.timelineservice.storage.TimelineWriter;
|
import org.apache.hadoop.yarn.server.timelineservice.storage.TimelineWriter;
|
||||||
|
|
||||||
@ -41,9 +50,15 @@
|
|||||||
@Private
|
@Private
|
||||||
@Unstable
|
@Unstable
|
||||||
public abstract class TimelineCollector extends CompositeService {
|
public abstract class TimelineCollector extends CompositeService {
|
||||||
|
|
||||||
private static final Log LOG = LogFactory.getLog(TimelineCollector.class);
|
private static final Log LOG = LogFactory.getLog(TimelineCollector.class);
|
||||||
|
public static final String SEPARATOR = "_";
|
||||||
|
|
||||||
private TimelineWriter writer;
|
private TimelineWriter writer;
|
||||||
|
private ConcurrentMap<String, AggregationStatusTable> aggregationGroups
|
||||||
|
= new ConcurrentHashMap<>();
|
||||||
|
private static Set<String> entityTypesSkipAggregation
|
||||||
|
= new HashSet<>();
|
||||||
|
|
||||||
public TimelineCollector(String name) {
|
public TimelineCollector(String name) {
|
||||||
super(name);
|
super(name);
|
||||||
@ -68,6 +83,28 @@ protected void setWriter(TimelineWriter w) {
|
|||||||
this.writer = w;
|
this.writer = w;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
protected TimelineWriter getWriter() {
|
||||||
|
return writer;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected Map<String, AggregationStatusTable> getAggregationGroups() {
|
||||||
|
return aggregationGroups;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Method to decide the set of timeline entity types the collector should
|
||||||
|
* skip on aggregations. Subclasses may want to override this method to
|
||||||
|
* customize their own behaviors.
|
||||||
|
*
|
||||||
|
* @return A set of strings consists of all types the collector should skip.
|
||||||
|
*/
|
||||||
|
protected Set<String> getEntityTypesSkipAggregation() {
|
||||||
|
return entityTypesSkipAggregation;
|
||||||
|
}
|
||||||
|
|
||||||
|
public abstract TimelineCollectorContext getTimelineEntityContext();
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Handles entity writes. These writes are synchronous and are written to the
|
* Handles entity writes. These writes are synchronous and are written to the
|
||||||
* backing storage without buffering/batching. If any entity already exists,
|
* backing storage without buffering/batching. If any entity already exists,
|
||||||
@ -90,8 +127,12 @@ public TimelineWriteResponse putEntities(TimelineEntities entities,
|
|||||||
LOG.debug("putEntities(entities=" + entities + ", callerUgi="
|
LOG.debug("putEntities(entities=" + entities + ", callerUgi="
|
||||||
+ callerUgi + ")");
|
+ callerUgi + ")");
|
||||||
}
|
}
|
||||||
|
|
||||||
TimelineCollectorContext context = getTimelineEntityContext();
|
TimelineCollectorContext context = getTimelineEntityContext();
|
||||||
|
|
||||||
|
// Update application metrics for aggregation
|
||||||
|
updateAggregateStatus(entities, aggregationGroups,
|
||||||
|
getEntityTypesSkipAggregation());
|
||||||
|
|
||||||
return writer.write(context.getClusterId(), context.getUserId(),
|
return writer.write(context.getClusterId(), context.getUserId(),
|
||||||
context.getFlowName(), context.getFlowVersion(), context.getFlowRunId(),
|
context.getFlowName(), context.getFlowVersion(), context.getFlowRunId(),
|
||||||
context.getAppId(), entities);
|
context.getAppId(), entities);
|
||||||
@ -117,6 +158,174 @@ public void putEntitiesAsync(TimelineEntities entities,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
public abstract TimelineCollectorContext getTimelineEntityContext();
|
/**
|
||||||
|
* Aggregate all metrics in given timeline entities with no predefined states.
|
||||||
|
*
|
||||||
|
* @param entities Entities to aggregate
|
||||||
|
* @param resultEntityId Id of the result entity
|
||||||
|
* @param resultEntityType Type of the result entity
|
||||||
|
* @param needsGroupIdInResult Marks if we want the aggregation group id in
|
||||||
|
* each aggregated metrics.
|
||||||
|
* @return A timeline entity that contains all aggregated TimelineMetric.
|
||||||
|
*/
|
||||||
|
public static TimelineEntity aggregateEntities(
|
||||||
|
TimelineEntities entities, String resultEntityId,
|
||||||
|
String resultEntityType, boolean needsGroupIdInResult) {
|
||||||
|
ConcurrentMap<String, AggregationStatusTable> aggregationGroups
|
||||||
|
= new ConcurrentHashMap<>();
|
||||||
|
updateAggregateStatus(entities, aggregationGroups, null);
|
||||||
|
if (needsGroupIdInResult) {
|
||||||
|
return aggregate(aggregationGroups, resultEntityId, resultEntityType);
|
||||||
|
} else {
|
||||||
|
return aggregateWithoutGroupId(
|
||||||
|
aggregationGroups, resultEntityId, resultEntityType);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Update the aggregation status table for a timeline collector.
|
||||||
|
*
|
||||||
|
* @param entities Entities to update
|
||||||
|
* @param aggregationGroups Aggregation status table
|
||||||
|
* @param typesToSkip Entity types that we can safely assume to skip updating
|
||||||
|
*/
|
||||||
|
static void updateAggregateStatus(
|
||||||
|
TimelineEntities entities,
|
||||||
|
ConcurrentMap<String, AggregationStatusTable> aggregationGroups,
|
||||||
|
Set<String> typesToSkip) {
|
||||||
|
for (TimelineEntity e : entities.getEntities()) {
|
||||||
|
if ((typesToSkip != null && typesToSkip.contains(e.getType()))
|
||||||
|
|| e.getMetrics().isEmpty()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
AggregationStatusTable aggrTable = aggregationGroups.get(e.getType());
|
||||||
|
if (aggrTable == null) {
|
||||||
|
AggregationStatusTable table = new AggregationStatusTable();
|
||||||
|
aggrTable = aggregationGroups.putIfAbsent(e.getType(),
|
||||||
|
table);
|
||||||
|
if (aggrTable == null) {
|
||||||
|
aggrTable = table;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
aggrTable.update(e);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Aggregate internal status and generate timeline entities for the
|
||||||
|
* aggregation results.
|
||||||
|
*
|
||||||
|
* @param aggregationGroups Aggregation status table
|
||||||
|
* @param resultEntityId Id of the result entity
|
||||||
|
* @param resultEntityType Type of the result entity
|
||||||
|
* @return A timeline entity that contains all aggregated TimelineMetric.
|
||||||
|
*/
|
||||||
|
static TimelineEntity aggregate(
|
||||||
|
Map<String, AggregationStatusTable> aggregationGroups,
|
||||||
|
String resultEntityId, String resultEntityType) {
|
||||||
|
TimelineEntity result = new TimelineEntity();
|
||||||
|
result.setId(resultEntityId);
|
||||||
|
result.setType(resultEntityType);
|
||||||
|
for (Map.Entry<String, AggregationStatusTable> entry
|
||||||
|
: aggregationGroups.entrySet()) {
|
||||||
|
entry.getValue().aggregateAllTo(result, entry.getKey());
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Aggregate internal status and generate timeline entities for the
|
||||||
|
* aggregation results. The result metrics will not have aggregation group
|
||||||
|
* information.
|
||||||
|
*
|
||||||
|
* @param aggregationGroups Aggregation status table
|
||||||
|
* @param resultEntityId Id of the result entity
|
||||||
|
* @param resultEntityType Type of the result entity
|
||||||
|
* @return A timeline entity that contains all aggregated TimelineMetric.
|
||||||
|
*/
|
||||||
|
static TimelineEntity aggregateWithoutGroupId(
|
||||||
|
Map<String, AggregationStatusTable> aggregationGroups,
|
||||||
|
String resultEntityId, String resultEntityType) {
|
||||||
|
TimelineEntity result = new TimelineEntity();
|
||||||
|
result.setId(resultEntityId);
|
||||||
|
result.setType(resultEntityType);
|
||||||
|
for (Map.Entry<String, AggregationStatusTable> entry
|
||||||
|
: aggregationGroups.entrySet()) {
|
||||||
|
entry.getValue().aggregateAllTo(result, "");
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Note: In memory aggregation is performed in an eventually consistent
|
||||||
|
// fashion.
|
||||||
|
private static class AggregationStatusTable {
|
||||||
|
// On aggregation, for each metric, aggregate all per-entity accumulated
|
||||||
|
// metrics. We only use the id and type for TimelineMetrics in the key set
|
||||||
|
// of this table.
|
||||||
|
private ConcurrentMap<TimelineMetric, Map<String, TimelineMetric>>
|
||||||
|
aggregateTable;
|
||||||
|
|
||||||
|
public AggregationStatusTable() {
|
||||||
|
aggregateTable = new ConcurrentHashMap<>();
|
||||||
|
}
|
||||||
|
|
||||||
|
public void update(TimelineEntity incoming) {
|
||||||
|
String entityId = incoming.getId();
|
||||||
|
for (TimelineMetric m : incoming.getMetrics()) {
|
||||||
|
// Skip if the metric does not need aggregation
|
||||||
|
if (m.getRealtimeAggregationOp() == TimelineMetricOperation.NOP) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
// Update aggregateTable
|
||||||
|
Map<String, TimelineMetric> aggrRow = aggregateTable.get(m);
|
||||||
|
if (aggrRow == null) {
|
||||||
|
Map<String, TimelineMetric> tempRow = new ConcurrentHashMap<>();
|
||||||
|
aggrRow = aggregateTable.putIfAbsent(m, tempRow);
|
||||||
|
if (aggrRow == null) {
|
||||||
|
aggrRow = tempRow;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
aggrRow.put(entityId, m);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public TimelineEntity aggregateTo(TimelineMetric metric, TimelineEntity e,
|
||||||
|
String aggregationGroupId) {
|
||||||
|
if (metric.getRealtimeAggregationOp() == TimelineMetricOperation.NOP) {
|
||||||
|
return e;
|
||||||
|
}
|
||||||
|
Map<String, TimelineMetric> aggrRow = aggregateTable.get(metric);
|
||||||
|
if (aggrRow != null) {
|
||||||
|
TimelineMetric aggrMetric = new TimelineMetric();
|
||||||
|
if (aggregationGroupId.length() > 0) {
|
||||||
|
aggrMetric.setId(metric.getId() + SEPARATOR + aggregationGroupId);
|
||||||
|
} else {
|
||||||
|
aggrMetric.setId(metric.getId());
|
||||||
|
}
|
||||||
|
aggrMetric.setRealtimeAggregationOp(TimelineMetricOperation.NOP);
|
||||||
|
Map<Object, Object> status = new HashMap<>();
|
||||||
|
for (TimelineMetric m : aggrRow.values()) {
|
||||||
|
TimelineMetric.aggregateTo(m, aggrMetric, status);
|
||||||
|
// getRealtimeAggregationOp returns an enum so we can directly
|
||||||
|
// compare with "!=".
|
||||||
|
if (m.getRealtimeAggregationOp()
|
||||||
|
!= aggrMetric.getRealtimeAggregationOp()) {
|
||||||
|
aggrMetric.setRealtimeAggregationOp(m.getRealtimeAggregationOp());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Set<TimelineMetric> metrics = e.getMetrics();
|
||||||
|
metrics.remove(aggrMetric);
|
||||||
|
metrics.add(aggrMetric);
|
||||||
|
}
|
||||||
|
return e;
|
||||||
|
}
|
||||||
|
|
||||||
|
public TimelineEntity aggregateAllTo(TimelineEntity e,
|
||||||
|
String aggregationGroupId) {
|
||||||
|
for (TimelineMetric m : aggregateTable.keySet()) {
|
||||||
|
aggregateTo(m, e, aggregationGroupId);
|
||||||
|
}
|
||||||
|
return e;
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -24,5 +24,5 @@
|
|||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
public enum TimelineAggregationTrack {
|
public enum TimelineAggregationTrack {
|
||||||
FLOW, USER, QUEUE
|
APP, FLOW, USER, QUEUE
|
||||||
}
|
}
|
||||||
|
@ -0,0 +1,127 @@
|
|||||||
|
/**
|
||||||
|
* Licensed to the Apache Software Foundation (ASF) under one
|
||||||
|
* or more contributor license agreements. See the NOTICE file
|
||||||
|
* distributed with this work for additional information
|
||||||
|
* regarding copyright ownership. The ASF licenses this file
|
||||||
|
* to you under the Apache License, Version 2.0 (the
|
||||||
|
* "License"); you may not use this file except in compliance
|
||||||
|
* with the License. You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package org.apache.hadoop.yarn.server.timelineservice.collector;
|
||||||
|
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetricOperation;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric;
|
||||||
|
import org.junit.Test;
|
||||||
|
|
||||||
|
import java.util.HashSet;
|
||||||
|
import java.util.Set;
|
||||||
|
|
||||||
|
import static org.junit.Assert.assertEquals;
|
||||||
|
import static org.junit.Assert.fail;
|
||||||
|
|
||||||
|
public class TestTimelineCollector {
|
||||||
|
|
||||||
|
private TimelineEntities generateTestEntities(int groups, int entities) {
|
||||||
|
TimelineEntities te = new TimelineEntities();
|
||||||
|
for (int j = 0; j < groups; j++) {
|
||||||
|
for (int i = 0; i < entities; i++) {
|
||||||
|
TimelineEntity entity = new TimelineEntity();
|
||||||
|
String containerId = "container_1000178881110_2002_" + i;
|
||||||
|
entity.setId(containerId);
|
||||||
|
String entityType = "TEST_" + j;
|
||||||
|
entity.setType(entityType);
|
||||||
|
long cTime = 1425016501000L;
|
||||||
|
entity.setCreatedTime(cTime);
|
||||||
|
|
||||||
|
// add metrics
|
||||||
|
Set<TimelineMetric> metrics = new HashSet<>();
|
||||||
|
TimelineMetric m1 = new TimelineMetric();
|
||||||
|
m1.setId("HDFS_BYTES_WRITE");
|
||||||
|
m1.setRealtimeAggregationOp(TimelineMetricOperation.SUM);
|
||||||
|
long ts = System.currentTimeMillis();
|
||||||
|
m1.addValue(ts - 20000, 100L);
|
||||||
|
metrics.add(m1);
|
||||||
|
|
||||||
|
TimelineMetric m2 = new TimelineMetric();
|
||||||
|
m2.setId("VCORES_USED");
|
||||||
|
m2.setRealtimeAggregationOp(TimelineMetricOperation.SUM);
|
||||||
|
m2.addValue(ts - 20000, 3L);
|
||||||
|
metrics.add(m2);
|
||||||
|
|
||||||
|
// m3 should not show up in the aggregation
|
||||||
|
TimelineMetric m3 = new TimelineMetric();
|
||||||
|
m3.setId("UNRELATED_VALUES");
|
||||||
|
m3.addValue(ts - 20000, 3L);
|
||||||
|
metrics.add(m3);
|
||||||
|
|
||||||
|
TimelineMetric m4 = new TimelineMetric();
|
||||||
|
m4.setId("TXN_FINISH_TIME");
|
||||||
|
m4.setRealtimeAggregationOp(TimelineMetricOperation.MAX);
|
||||||
|
m4.addValue(ts - 20000, i);
|
||||||
|
metrics.add(m4);
|
||||||
|
|
||||||
|
entity.addMetrics(metrics);
|
||||||
|
te.addEntity(entity);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return te;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testAggregation() throws Exception {
|
||||||
|
// Test aggregation with multiple groups.
|
||||||
|
int groups = 3;
|
||||||
|
int n = 50;
|
||||||
|
TimelineEntities testEntities = generateTestEntities(groups, n);
|
||||||
|
TimelineEntity resultEntity = TimelineCollector.aggregateEntities(
|
||||||
|
testEntities, "test_result", "TEST_AGGR", true);
|
||||||
|
assertEquals(resultEntity.getMetrics().size(), groups * 3);
|
||||||
|
|
||||||
|
for (int i = 0; i < groups; i++) {
|
||||||
|
Set<TimelineMetric> metrics = resultEntity.getMetrics();
|
||||||
|
for (TimelineMetric m : metrics) {
|
||||||
|
if (m.getId().startsWith("HDFS_BYTES_WRITE")) {
|
||||||
|
assertEquals(100 * n, m.getSingleDataValue().intValue());
|
||||||
|
} else if (m.getId().startsWith("VCORES_USED")) {
|
||||||
|
assertEquals(3 * n, m.getSingleDataValue().intValue());
|
||||||
|
} else if (m.getId().startsWith("TXN_FINISH_TIME")) {
|
||||||
|
assertEquals(n - 1, m.getSingleDataValue());
|
||||||
|
} else {
|
||||||
|
fail("Unrecognized metric! " + m.getId());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test aggregation with a single group.
|
||||||
|
TimelineEntities testEntities1 = generateTestEntities(1, n);
|
||||||
|
TimelineEntity resultEntity1 = TimelineCollector.aggregateEntities(
|
||||||
|
testEntities1, "test_result", "TEST_AGGR", false);
|
||||||
|
assertEquals(resultEntity1.getMetrics().size(), 3);
|
||||||
|
|
||||||
|
Set<TimelineMetric> metrics = resultEntity1.getMetrics();
|
||||||
|
for (TimelineMetric m : metrics) {
|
||||||
|
if (m.getId().equals("HDFS_BYTES_WRITE")) {
|
||||||
|
assertEquals(100 * n, m.getSingleDataValue().intValue());
|
||||||
|
} else if (m.getId().equals("VCORES_USED")) {
|
||||||
|
assertEquals(3 * n, m.getSingleDataValue().intValue());
|
||||||
|
} else if (m.getId().equals("TXN_FINISH_TIME")) {
|
||||||
|
assertEquals(n - 1, m.getSingleDataValue());
|
||||||
|
} else {
|
||||||
|
fail("Unrecognized metric! " + m.getId());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
@ -25,11 +25,15 @@
|
|||||||
import java.nio.file.Files;
|
import java.nio.file.Files;
|
||||||
import java.nio.file.Path;
|
import java.nio.file.Path;
|
||||||
import java.nio.file.Paths;
|
import java.nio.file.Paths;
|
||||||
|
import java.util.HashMap;
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
import org.apache.commons.io.FileUtils;
|
import org.apache.commons.io.FileUtils;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetricOperation;
|
||||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric;
|
||||||
import org.apache.hadoop.yarn.conf.YarnConfiguration;
|
import org.apache.hadoop.yarn.conf.YarnConfiguration;
|
||||||
import org.apache.hadoop.yarn.util.timeline.TimelineUtils;
|
import org.apache.hadoop.yarn.util.timeline.TimelineUtils;
|
||||||
import org.junit.Test;
|
import org.junit.Test;
|
||||||
@ -51,6 +55,26 @@ public void testWriteEntityToFile() throws Exception {
|
|||||||
entity.setCreatedTime(1425016501000L);
|
entity.setCreatedTime(1425016501000L);
|
||||||
te.addEntity(entity);
|
te.addEntity(entity);
|
||||||
|
|
||||||
|
TimelineMetric metric = new TimelineMetric();
|
||||||
|
String metricId = "CPU";
|
||||||
|
metric.setId(metricId);
|
||||||
|
metric.setType(TimelineMetric.Type.SINGLE_VALUE);
|
||||||
|
metric.setRealtimeAggregationOp(TimelineMetricOperation.SUM);
|
||||||
|
metric.addValue(1425016501000L, 1234567L);
|
||||||
|
|
||||||
|
TimelineEntity entity2 = new TimelineEntity();
|
||||||
|
String id2 = "metric";
|
||||||
|
String type2 = "app";
|
||||||
|
entity2.setId(id2);
|
||||||
|
entity2.setType(type2);
|
||||||
|
entity2.setCreatedTime(1425016503000L);
|
||||||
|
entity2.addMetric(metric);
|
||||||
|
te.addEntity(entity2);
|
||||||
|
|
||||||
|
Map<String, TimelineMetric> aggregatedMetrics =
|
||||||
|
new HashMap<String, TimelineMetric>();
|
||||||
|
aggregatedMetrics.put(metricId, metric);
|
||||||
|
|
||||||
FileSystemTimelineWriterImpl fsi = null;
|
FileSystemTimelineWriterImpl fsi = null;
|
||||||
try {
|
try {
|
||||||
fsi = new FileSystemTimelineWriterImpl();
|
fsi = new FileSystemTimelineWriterImpl();
|
||||||
@ -68,11 +92,27 @@ public void testWriteEntityToFile() throws Exception {
|
|||||||
assertTrue(f.exists() && !f.isDirectory());
|
assertTrue(f.exists() && !f.isDirectory());
|
||||||
List<String> data = Files.readAllLines(path, StandardCharsets.UTF_8);
|
List<String> data = Files.readAllLines(path, StandardCharsets.UTF_8);
|
||||||
// ensure there's only one entity + 1 new line
|
// ensure there's only one entity + 1 new line
|
||||||
assertTrue(data.size() == 2);
|
assertTrue("data size is:" + data.size(), data.size() == 2);
|
||||||
String d = data.get(0);
|
String d = data.get(0);
|
||||||
// confirm the contents same as what was written
|
// confirm the contents same as what was written
|
||||||
assertEquals(d, TimelineUtils.dumpTimelineRecordtoJSON(entity));
|
assertEquals(d, TimelineUtils.dumpTimelineRecordtoJSON(entity));
|
||||||
|
|
||||||
|
// verify aggregated metrics
|
||||||
|
String fileName2 = fsi.getOutputRoot() +
|
||||||
|
"/entities/cluster_id/user_id/flow_name/flow_version/12345678/app_id/"
|
||||||
|
+ type2 + "/" + id2 +
|
||||||
|
FileSystemTimelineWriterImpl.TIMELINE_SERVICE_STORAGE_EXTENSION;
|
||||||
|
Path path2 = Paths.get(fileName2);
|
||||||
|
File file = new File(fileName2);
|
||||||
|
assertTrue(file.exists() && !file.isDirectory());
|
||||||
|
List<String> data2 = Files.readAllLines(path2, StandardCharsets.UTF_8);
|
||||||
|
// ensure there's only one entity + 1 new line
|
||||||
|
assertTrue("data size is:" + data.size(), data2.size() == 2);
|
||||||
|
String metricToString = data2.get(0);
|
||||||
|
// confirm the contents same as what was written
|
||||||
|
assertEquals(metricToString,
|
||||||
|
TimelineUtils.dumpTimelineRecordtoJSON(entity2));
|
||||||
|
|
||||||
// delete the directory
|
// delete the directory
|
||||||
File outputDir = new File(fsi.getOutputRoot());
|
File outputDir = new File(fsi.getOutputRoot());
|
||||||
FileUtils.deleteDirectory(outputDir);
|
FileUtils.deleteDirectory(outputDir);
|
||||||
@ -84,4 +124,5 @@ public void testWriteEntityToFile() throws Exception {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -42,6 +42,7 @@
|
|||||||
import org.apache.hadoop.hbase.client.Scan;
|
import org.apache.hadoop.hbase.client.Scan;
|
||||||
import org.apache.hadoop.hbase.util.Bytes;
|
import org.apache.hadoop.hbase.util.Bytes;
|
||||||
import org.apache.hadoop.yarn.api.records.ApplicationId;
|
import org.apache.hadoop.yarn.api.records.ApplicationId;
|
||||||
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetricOperation;
|
||||||
import org.apache.hadoop.yarn.api.records.timelineservice.ApplicationEntity;
|
import org.apache.hadoop.yarn.api.records.timelineservice.ApplicationEntity;
|
||||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||||
@ -539,6 +540,26 @@ public void testWriteApplicationToHBase() throws Exception {
|
|||||||
metrics.add(m1);
|
metrics.add(m1);
|
||||||
entity.addMetrics(metrics);
|
entity.addMetrics(metrics);
|
||||||
|
|
||||||
|
// add aggregated metrics
|
||||||
|
TimelineEntity aggEntity = new TimelineEntity();
|
||||||
|
String type = TimelineEntityType.YARN_APPLICATION.toString();
|
||||||
|
aggEntity.setId(appId);
|
||||||
|
aggEntity.setType(type);
|
||||||
|
long cTime2 = 1425016502000L;
|
||||||
|
long mTime2 = 1425026902000L;
|
||||||
|
aggEntity.setCreatedTime(cTime2);
|
||||||
|
|
||||||
|
TimelineMetric aggMetric = new TimelineMetric();
|
||||||
|
aggMetric.setId("MEM_USAGE");
|
||||||
|
Map<Long, Number> aggMetricValues = new HashMap<Long, Number>();
|
||||||
|
ts = System.currentTimeMillis();
|
||||||
|
aggMetricValues.put(ts - 120000, 102400000);
|
||||||
|
aggMetric.setType(Type.SINGLE_VALUE);
|
||||||
|
aggMetric.setRealtimeAggregationOp(TimelineMetricOperation.SUM);
|
||||||
|
aggMetric.setValues(aggMetricValues);
|
||||||
|
Set<TimelineMetric> aggMetrics = new HashSet<>();
|
||||||
|
aggMetrics.add(aggMetric);
|
||||||
|
entity.addMetrics(aggMetrics);
|
||||||
te.addEntity(entity);
|
te.addEntity(entity);
|
||||||
|
|
||||||
HBaseTimelineWriterImpl hbi = null;
|
HBaseTimelineWriterImpl hbi = null;
|
||||||
@ -564,7 +585,7 @@ public void testWriteApplicationToHBase() throws Exception {
|
|||||||
Result result = new ApplicationTable().getResult(c1, conn, get);
|
Result result = new ApplicationTable().getResult(c1, conn, get);
|
||||||
|
|
||||||
assertTrue(result != null);
|
assertTrue(result != null);
|
||||||
assertEquals(15, result.size());
|
assertEquals(16, result.size());
|
||||||
|
|
||||||
// check the row key
|
// check the row key
|
||||||
byte[] row1 = result.getRow();
|
byte[] row1 = result.getRow();
|
||||||
@ -652,10 +673,17 @@ public void testWriteApplicationToHBase() throws Exception {
|
|||||||
assertEquals(conf, conf2);
|
assertEquals(conf, conf2);
|
||||||
|
|
||||||
Set<TimelineMetric> metrics2 = e1.getMetrics();
|
Set<TimelineMetric> metrics2 = e1.getMetrics();
|
||||||
assertEquals(metrics, metrics2);
|
assertEquals(2, metrics2.size());
|
||||||
for (TimelineMetric metric2 : metrics2) {
|
for (TimelineMetric metric2 : metrics2) {
|
||||||
Map<Long, Number> metricValues2 = metric2.getValues();
|
Map<Long, Number> metricValues2 = metric2.getValues();
|
||||||
matchMetrics(metricValues, metricValues2);
|
assertTrue(metric2.getId().equals("MAP_SLOT_MILLIS") ||
|
||||||
|
metric2.getId().equals("MEM_USAGE"));
|
||||||
|
if (metric2.getId().equals("MAP_SLOT_MILLIS")) {
|
||||||
|
matchMetrics(metricValues, metricValues2);
|
||||||
|
}
|
||||||
|
if (metric2.getId().equals("MEM_USAGE")) {
|
||||||
|
matchMetrics(aggMetricValues, metricValues2);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
} finally {
|
} finally {
|
||||||
if (hbi != null) {
|
if (hbi != null) {
|
||||||
@ -724,7 +752,6 @@ public void testWriteEntityToHBase() throws Exception {
|
|||||||
m1.setValues(metricValues);
|
m1.setValues(metricValues);
|
||||||
metrics.add(m1);
|
metrics.add(m1);
|
||||||
entity.addMetrics(metrics);
|
entity.addMetrics(metrics);
|
||||||
|
|
||||||
te.addEntity(entity);
|
te.addEntity(entity);
|
||||||
|
|
||||||
HBaseTimelineWriterImpl hbi = null;
|
HBaseTimelineWriterImpl hbi = null;
|
||||||
|
Loading…
Reference in New Issue
Block a user