YARN-3816. [Aggregation] App-level aggregation and accumulation for YARN system metrics (Li Lu via sjlee)
This commit is contained in:
parent
fba7532c56
commit
39cce4e629
@ -19,12 +19,13 @@
|
||||
|
||||
import org.apache.hadoop.classification.InterfaceAudience;
|
||||
import org.apache.hadoop.classification.InterfaceStability;
|
||||
import org.apache.hadoop.yarn.exceptions.YarnRuntimeException;
|
||||
|
||||
import javax.xml.bind.annotation.XmlAccessType;
|
||||
import javax.xml.bind.annotation.XmlAccessorType;
|
||||
import javax.xml.bind.annotation.XmlElement;
|
||||
import javax.xml.bind.annotation.XmlRootElement;
|
||||
import java.util.Comparator;
|
||||
import java.util.Collections;
|
||||
import java.util.Map;
|
||||
import java.util.TreeMap;
|
||||
|
||||
@ -48,13 +49,13 @@ public static enum Type {
|
||||
|
||||
private Type type;
|
||||
private String id;
|
||||
private Comparator<Long> reverseComparator = new Comparator<Long>() {
|
||||
@Override
|
||||
public int compare(Long l1, Long l2) {
|
||||
return l2.compareTo(l1);
|
||||
}
|
||||
};
|
||||
private TreeMap<Long, Number> values = new TreeMap<>(reverseComparator);
|
||||
// By default, not to do any aggregation operations. This field will NOT be
|
||||
// persisted (like a "transient" member).
|
||||
private TimelineMetricOperation realtimeAggregationOp
|
||||
= TimelineMetricOperation.NOP;
|
||||
|
||||
private TreeMap<Long, Number> values
|
||||
= new TreeMap<>(Collections.reverseOrder());
|
||||
|
||||
public TimelineMetric() {
|
||||
this(Type.SINGLE_VALUE);
|
||||
@ -83,6 +84,26 @@ public void setId(String metricId) {
|
||||
this.id = metricId;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the real time aggregation operation of this metric.
|
||||
*
|
||||
* @return Real time aggregation operation
|
||||
*/
|
||||
public TimelineMetricOperation getRealtimeAggregationOp() {
|
||||
return realtimeAggregationOp;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the real time aggregation operation of this metric.
|
||||
*
|
||||
* @param op A timeline metric operation that the metric should perform on
|
||||
* real time aggregations
|
||||
*/
|
||||
public void setRealtimeAggregationOp(
|
||||
final TimelineMetricOperation op) {
|
||||
this.realtimeAggregationOp = op;
|
||||
}
|
||||
|
||||
// required by JAXB
|
||||
@InterfaceAudience.Private
|
||||
@XmlElement(name = "values")
|
||||
@ -98,8 +119,8 @@ public void setValues(Map<Long, Number> vals) {
|
||||
if (type == Type.SINGLE_VALUE) {
|
||||
overwrite(vals);
|
||||
} else {
|
||||
if (values != null) {
|
||||
this.values = new TreeMap<Long, Number>(reverseComparator);
|
||||
if (vals != null) {
|
||||
this.values = new TreeMap<>(Collections.reverseOrder());
|
||||
this.values.putAll(vals);
|
||||
} else {
|
||||
this.values = null;
|
||||
@ -166,11 +187,100 @@ public boolean equals(Object o) {
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
String str = "{id:" + id + ", type:" + type;
|
||||
if (!values.isEmpty()) {
|
||||
str += ", values:" + values;
|
||||
return "{id: " + id + ", type: " + type +
|
||||
", realtimeAggregationOp: " +
|
||||
realtimeAggregationOp + "; " + values.toString() +
|
||||
"}";
|
||||
}
|
||||
str += "}";
|
||||
return str;
|
||||
|
||||
/**
|
||||
* Get the latest timeline metric as single value type.
|
||||
*
|
||||
* @param metric Incoming timeline metric
|
||||
* @return The latest metric in the incoming metric
|
||||
*/
|
||||
public static TimelineMetric getLatestSingleValueMetric(
|
||||
TimelineMetric metric) {
|
||||
if (metric.getType() == Type.SINGLE_VALUE) {
|
||||
return metric;
|
||||
} else {
|
||||
TimelineMetric singleValueMetric = new TimelineMetric(Type.SINGLE_VALUE);
|
||||
Long firstKey = metric.values.firstKey();
|
||||
if (firstKey != null) {
|
||||
Number firstValue = metric.values.get(firstKey);
|
||||
singleValueMetric.addValue(firstKey, firstValue);
|
||||
}
|
||||
return singleValueMetric;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get single data timestamp of the metric.
|
||||
*
|
||||
* @return the single data timestamp
|
||||
*/
|
||||
public long getSingleDataTimestamp() {
|
||||
if (this.type == Type.SINGLE_VALUE) {
|
||||
if (values.size() == 0) {
|
||||
throw new YarnRuntimeException("Values for this timeline metric is " +
|
||||
"empty.");
|
||||
} else {
|
||||
return values.firstKey();
|
||||
}
|
||||
} else {
|
||||
throw new YarnRuntimeException("Type for this timeline metric is not " +
|
||||
"SINGLE_VALUE.");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get single data value of the metric.
|
||||
*
|
||||
* @return the single data value
|
||||
*/
|
||||
public Number getSingleDataValue() {
|
||||
if (this.type == Type.SINGLE_VALUE) {
|
||||
if (values.size() == 0) {
|
||||
return null;
|
||||
} else {
|
||||
return values.get(values.firstKey());
|
||||
}
|
||||
} else {
|
||||
throw new YarnRuntimeException("Type for this timeline metric is not " +
|
||||
"SINGLE_VALUE.");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Aggregate an incoming metric to the base aggregated metric with the given
|
||||
* operation state in a stateless fashion. The assumption here is
|
||||
* baseAggregatedMetric and latestMetric should be single value data if not
|
||||
* null.
|
||||
*
|
||||
* @param incomingMetric Incoming timeline metric to aggregate
|
||||
* @param baseAggregatedMetric Base timeline metric
|
||||
* @return Result metric after aggregation
|
||||
*/
|
||||
public static TimelineMetric aggregateTo(TimelineMetric incomingMetric,
|
||||
TimelineMetric baseAggregatedMetric) {
|
||||
return aggregateTo(incomingMetric, baseAggregatedMetric, null);
|
||||
}
|
||||
|
||||
/**
|
||||
* Aggregate an incoming metric to the base aggregated metric with the given
|
||||
* operation state. The assumption here is baseAggregatedMetric and
|
||||
* latestMetric should be single value data if not null.
|
||||
*
|
||||
* @param incomingMetric Incoming timeline metric to aggregate
|
||||
* @param baseAggregatedMetric Base timeline metric
|
||||
* @param state Operation state
|
||||
* @return Result metric after aggregation
|
||||
*/
|
||||
public static TimelineMetric aggregateTo(TimelineMetric incomingMetric,
|
||||
TimelineMetric baseAggregatedMetric, Map<Object, Object> state) {
|
||||
TimelineMetricOperation operation
|
||||
= incomingMetric.getRealtimeAggregationOp();
|
||||
return operation.aggregate(incomingMetric, baseAggregatedMetric, state);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -0,0 +1,115 @@
|
||||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.hadoop.yarn.api.records.timelineservice;
|
||||
|
||||
import org.apache.hadoop.yarn.exceptions.YarnRuntimeException;
|
||||
|
||||
/**
|
||||
* A calculator for timeline metrics.
|
||||
*/
|
||||
public final class TimelineMetricCalculator {
|
||||
|
||||
private TimelineMetricCalculator() {
|
||||
// do nothing.
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare two not-null numbers.
|
||||
* @param n1 Number n1
|
||||
* @param n2 Number n2
|
||||
* @return 0 if n1 equals n2, a negative int if n1 is less than n2, a
|
||||
* positive int otherwise.
|
||||
*/
|
||||
public static int compare(Number n1, Number n2) {
|
||||
if (n1 == null || n2 == null) {
|
||||
throw new YarnRuntimeException(
|
||||
"Number to be compared shouldn't be null.");
|
||||
}
|
||||
|
||||
if (n1 instanceof Integer || n1 instanceof Long) {
|
||||
if (n1.longValue() == n2.longValue()) {
|
||||
return 0;
|
||||
} else {
|
||||
return (n1.longValue() < n2.longValue()) ? -1 : 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (n1 instanceof Float || n1 instanceof Double) {
|
||||
if (n1.doubleValue() == n2.doubleValue()) {
|
||||
return 0;
|
||||
} else {
|
||||
return (n1.doubleValue() < n2.doubleValue()) ? -1 : 1;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO throw warnings/exceptions for other types of number.
|
||||
throw new YarnRuntimeException("Unsupported types for number comparison: "
|
||||
+ n1.getClass().getName() + ", " + n2.getClass().getName());
|
||||
}
|
||||
|
||||
/**
|
||||
* Subtract operation between two Numbers.
|
||||
* @param n1 Number n1
|
||||
* @param n2 Number n2
|
||||
* @return Number represent to (n1 - n2).
|
||||
*/
|
||||
public static Number sub(Number n1, Number n2) {
|
||||
if (n1 == null) {
|
||||
throw new YarnRuntimeException(
|
||||
"Number to be subtracted shouldn't be null.");
|
||||
} else if (n2 == null) {
|
||||
return n1;
|
||||
}
|
||||
|
||||
if (n1 instanceof Integer || n1 instanceof Long) {
|
||||
return n1.longValue() - n2.longValue();
|
||||
}
|
||||
|
||||
if (n1 instanceof Float || n1 instanceof Double) {
|
||||
return n1.doubleValue() - n2.doubleValue();
|
||||
}
|
||||
|
||||
// TODO throw warnings/exceptions for other types of number.
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sum up two Numbers.
|
||||
* @param n1 Number n1
|
||||
* @param n2 Number n2
|
||||
* @return Number represent to (n1 + n2).
|
||||
*/
|
||||
public static Number sum(Number n1, Number n2) {
|
||||
if (n1 == null) {
|
||||
return n2;
|
||||
} else if (n2 == null) {
|
||||
return n1;
|
||||
}
|
||||
|
||||
if (n1 instanceof Integer || n1 instanceof Long) {
|
||||
return n1.longValue() + n2.longValue();
|
||||
}
|
||||
|
||||
if (n1 instanceof Float || n1 instanceof Double) {
|
||||
return n1.doubleValue() + n2.doubleValue();
|
||||
}
|
||||
|
||||
// TODO throw warnings/exceptions for other types of number.
|
||||
return null;
|
||||
}
|
||||
}
|
@ -0,0 +1,167 @@
|
||||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.api.records.timelineservice;
|
||||
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* Aggregation operations.
|
||||
*/
|
||||
public enum TimelineMetricOperation {
|
||||
NOP("NOP") {
|
||||
/**
|
||||
* Do nothing on the base metric.
|
||||
*
|
||||
* @param incoming Metric a
|
||||
* @param base Metric b
|
||||
* @param state Operation state (not used)
|
||||
* @return Metric b
|
||||
*/
|
||||
@Override
|
||||
public TimelineMetric exec(TimelineMetric incoming,
|
||||
TimelineMetric base, Map<Object, Object> state) {
|
||||
return base;
|
||||
}
|
||||
},
|
||||
MAX("MAX") {
|
||||
/**
|
||||
* Keep the greater value of incoming and base. Stateless operation.
|
||||
*
|
||||
* @param incoming Metric a
|
||||
* @param base Metric b
|
||||
* @param state Operation state (not used)
|
||||
* @return the greater value of a and b
|
||||
*/
|
||||
@Override
|
||||
public TimelineMetric exec(TimelineMetric incoming,
|
||||
TimelineMetric base, Map<Object, Object> state) {
|
||||
if (base == null) {
|
||||
return incoming;
|
||||
}
|
||||
Number incomingValue = incoming.getSingleDataValue();
|
||||
Number aggregateValue = base.getSingleDataValue();
|
||||
if (aggregateValue == null) {
|
||||
aggregateValue = Long.MIN_VALUE;
|
||||
}
|
||||
if (TimelineMetricCalculator.compare(incomingValue, aggregateValue) > 0) {
|
||||
base.addValue(incoming.getSingleDataTimestamp(), incomingValue);
|
||||
}
|
||||
return base;
|
||||
}
|
||||
},
|
||||
REPLACE("REPLACE") {
|
||||
/**
|
||||
* Replace the base metric with the incoming value. Stateless operation.
|
||||
*
|
||||
* @param incoming Metric a
|
||||
* @param base Metric b
|
||||
* @param state Operation state (not used)
|
||||
* @return Metric a
|
||||
*/
|
||||
@Override
|
||||
public TimelineMetric exec(TimelineMetric incoming,
|
||||
TimelineMetric base,
|
||||
Map<Object, Object> state) {
|
||||
return incoming;
|
||||
}
|
||||
},
|
||||
SUM("SUM") {
|
||||
/**
|
||||
* Return the sum of the incoming metric and the base metric if the
|
||||
* operation is stateless. For stateful operations, also subtract the
|
||||
* value of the timeline metric mapped to the PREV_METRIC_STATE_KEY
|
||||
* in the state object.
|
||||
*
|
||||
* @param incoming Metric a
|
||||
* @param base Metric b
|
||||
* @param state Operation state (PREV_METRIC_STATE_KEY's value as Metric p)
|
||||
* @return A metric with value a + b - p
|
||||
*/
|
||||
@Override
|
||||
public TimelineMetric exec(TimelineMetric incoming, TimelineMetric base,
|
||||
Map<Object, Object> state) {
|
||||
if (base == null) {
|
||||
return incoming;
|
||||
}
|
||||
Number incomingValue = incoming.getSingleDataValue();
|
||||
Number aggregateValue = base.getSingleDataValue();
|
||||
Number result
|
||||
= TimelineMetricCalculator.sum(incomingValue, aggregateValue);
|
||||
|
||||
// If there are previous value in the state, we will take it off from the
|
||||
// sum
|
||||
if (state != null) {
|
||||
Object prevMetric = state.get(PREV_METRIC_STATE_KEY);
|
||||
if (prevMetric instanceof TimelineMetric) {
|
||||
result = TimelineMetricCalculator.sub(result,
|
||||
((TimelineMetric) prevMetric).getSingleDataValue());
|
||||
}
|
||||
}
|
||||
base.addValue(incoming.getSingleDataTimestamp(), result);
|
||||
return base;
|
||||
}
|
||||
},
|
||||
AVG("AVERAGE") {
|
||||
/**
|
||||
* Return the average value of the incoming metric and the base metric,
|
||||
* with a given state. Not supported yet.
|
||||
*
|
||||
* @param incoming Metric a
|
||||
* @param base Metric b
|
||||
* @param state Operation state
|
||||
* @return Not finished yet
|
||||
*/
|
||||
@Override
|
||||
public TimelineMetric exec(TimelineMetric incoming, TimelineMetric base,
|
||||
Map<Object, Object> state) {
|
||||
// Not supported yet
|
||||
throw new UnsupportedOperationException(
|
||||
"Unsupported aggregation operation: AVERAGE");
|
||||
}
|
||||
};
|
||||
|
||||
public static final String PREV_METRIC_STATE_KEY = "PREV_METRIC";
|
||||
|
||||
/**
|
||||
* Perform the aggregation operation.
|
||||
*
|
||||
* @param incoming Incoming metric
|
||||
* @param aggregate Base aggregation metric
|
||||
* @param state Operation state
|
||||
* @return Result metric for this aggregation operation
|
||||
*/
|
||||
public TimelineMetric aggregate(TimelineMetric incoming,
|
||||
TimelineMetric aggregate, Map<Object, Object> state) {
|
||||
return exec(incoming, aggregate, state);
|
||||
}
|
||||
|
||||
private final String opName;
|
||||
|
||||
TimelineMetricOperation(String opString) {
|
||||
opName = opString;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return this.opName;
|
||||
}
|
||||
|
||||
abstract TimelineMetric exec(TimelineMetric incoming, TimelineMetric base,
|
||||
Map<Object, Object> state);
|
||||
}
|
@ -0,0 +1,100 @@
|
||||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.hadoop.yarn.api.records.timelineservice;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.fail;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric.Type;
|
||||
|
||||
import org.junit.Test;
|
||||
|
||||
public class TestTimelineMetric {
|
||||
|
||||
@Test
|
||||
public void testTimelineMetricAggregation() {
|
||||
long ts = System.currentTimeMillis();
|
||||
// single_value metric add against null metric
|
||||
TimelineMetric m1 = getSingleValueMetric("MEGA_BYTES_MILLIS",
|
||||
TimelineMetricOperation.SUM, ts, 10000L);
|
||||
TimelineMetric aggregatedMetric = TimelineMetric.aggregateTo(m1, null);
|
||||
assertEquals(10000L, aggregatedMetric.getSingleDataValue());
|
||||
|
||||
TimelineMetric m2 = getSingleValueMetric("MEGA_BYTES_MILLIS",
|
||||
TimelineMetricOperation.SUM, ts, 20000L);
|
||||
aggregatedMetric = TimelineMetric.aggregateTo(m2, aggregatedMetric);
|
||||
assertEquals(30000L, aggregatedMetric.getSingleDataValue());
|
||||
|
||||
// stateful sum test
|
||||
Map<Object, Object> state = new HashMap<>();
|
||||
state.put(TimelineMetricOperation.PREV_METRIC_STATE_KEY, m2);
|
||||
TimelineMetric m2New = getSingleValueMetric("MEGA_BYTES_MILLIS",
|
||||
TimelineMetricOperation.SUM, ts, 10000L);
|
||||
aggregatedMetric = TimelineMetric.aggregateTo(m2New, aggregatedMetric,
|
||||
state);
|
||||
assertEquals(20000L, aggregatedMetric.getSingleDataValue());
|
||||
|
||||
// single_value metric max against single_value metric
|
||||
TimelineMetric m3 = getSingleValueMetric("TRANSFER_RATE",
|
||||
TimelineMetricOperation.MAX, ts, 150L);
|
||||
TimelineMetric aggregatedMax = TimelineMetric.aggregateTo(m3, null);
|
||||
assertEquals(150L, aggregatedMax.getSingleDataValue());
|
||||
|
||||
TimelineMetric m4 = getSingleValueMetric("TRANSFER_RATE",
|
||||
TimelineMetricOperation.MAX, ts, 170L);
|
||||
aggregatedMax = TimelineMetric.aggregateTo(m4, aggregatedMax);
|
||||
assertEquals(170L, aggregatedMax.getSingleDataValue());
|
||||
|
||||
// single_value metric avg against single_value metric
|
||||
TimelineMetric m5 = getSingleValueMetric("TRANSFER_RATE",
|
||||
TimelineMetricOperation.AVG, ts, 150L);
|
||||
try {
|
||||
TimelineMetric.aggregateTo(m5, null);
|
||||
fail("Taking average among metrics is not supported! ");
|
||||
} catch (UnsupportedOperationException e) {
|
||||
// Expected
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private static TimelineMetric getSingleValueMetric(String id,
|
||||
TimelineMetricOperation op, long timestamp, long value) {
|
||||
TimelineMetric m = new TimelineMetric();
|
||||
m.setId(id);
|
||||
m.setType(Type.SINGLE_VALUE);
|
||||
m.setRealtimeAggregationOp(op);
|
||||
Map<Long, Number> metricValues = new HashMap<Long, Number>();
|
||||
metricValues.put(timestamp, value);
|
||||
m.setValues(metricValues);
|
||||
return m;
|
||||
}
|
||||
|
||||
private static TimelineMetric getTimeSeriesMetric(String id,
|
||||
TimelineMetricOperation op, Map<Long, Number> metricValues) {
|
||||
TimelineMetric m = new TimelineMetric();
|
||||
m.setId(id);
|
||||
m.setType(Type.TIME_SERIES);
|
||||
m.setRealtimeAggregationOp(op);
|
||||
m.setValues(metricValues);
|
||||
return m;
|
||||
}
|
||||
|
||||
}
|
@ -64,13 +64,13 @@ public void testTimelineEntities() throws Exception {
|
||||
metric1.getValues().entrySet().iterator();
|
||||
Map.Entry<Long, Number> entry = itr.next();
|
||||
Assert.assertEquals(new Long(3L), entry.getKey());
|
||||
Assert.assertEquals(new Double(3.0D), entry.getValue());
|
||||
Assert.assertEquals(3.0D, entry.getValue());
|
||||
entry = itr.next();
|
||||
Assert.assertEquals(new Long(2L), entry.getKey());
|
||||
Assert.assertEquals(new Integer(2), entry.getValue());
|
||||
Assert.assertEquals(2, entry.getValue());
|
||||
entry = itr.next();
|
||||
Assert.assertEquals(new Long(1L), entry.getKey());
|
||||
Assert.assertEquals(new Float(1.0F), entry.getValue());
|
||||
Assert.assertEquals(1.0F, entry.getValue());
|
||||
Assert.assertFalse(itr.hasNext());
|
||||
entity.addMetric(metric1);
|
||||
|
||||
|
@ -33,6 +33,7 @@
|
||||
import org.apache.hadoop.yarn.api.records.NodeId;
|
||||
import org.apache.hadoop.yarn.api.records.Resource;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.ContainerEntity;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetricOperation;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity.Identifier;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntityType;
|
||||
@ -119,12 +120,15 @@ public void reportContainerResourceUsage(Container container, Long pmemUsage,
|
||||
if (pmemUsage != ResourceCalculatorProcessTree.UNAVAILABLE) {
|
||||
TimelineMetric memoryMetric = new TimelineMetric();
|
||||
memoryMetric.setId(ContainerMetric.MEMORY.toString());
|
||||
memoryMetric.setRealtimeAggregationOp(TimelineMetricOperation.SUM);
|
||||
memoryMetric.addValue(currentTimeMillis, pmemUsage);
|
||||
entity.addMetric(memoryMetric);
|
||||
}
|
||||
if (cpuUsagePercentPerCore != ResourceCalculatorProcessTree.UNAVAILABLE) {
|
||||
TimelineMetric cpuMetric = new TimelineMetric();
|
||||
cpuMetric.setId(ContainerMetric.CPU.toString());
|
||||
// TODO: support average
|
||||
cpuMetric.setRealtimeAggregationOp(TimelineMetricOperation.SUM);
|
||||
cpuMetric.addValue(currentTimeMillis,
|
||||
Math.round(cpuUsagePercentPerCore));
|
||||
entity.addMetric(cpuMetric);
|
||||
|
@ -18,15 +18,26 @@
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.collector;
|
||||
|
||||
import com.google.common.util.concurrent.ThreadFactoryBuilder;
|
||||
import org.apache.commons.logging.Log;
|
||||
import org.apache.commons.logging.LogFactory;
|
||||
import org.apache.hadoop.classification.InterfaceAudience.Private;
|
||||
import org.apache.hadoop.classification.InterfaceStability.Unstable;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.security.UserGroupInformation;
|
||||
import org.apache.hadoop.yarn.api.records.ApplicationId;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntityType;
|
||||
import org.apache.hadoop.yarn.conf.YarnConfiguration;
|
||||
|
||||
import com.google.common.base.Preconditions;
|
||||
|
||||
import java.util.HashSet;
|
||||
import java.util.Set;
|
||||
import java.util.concurrent.ScheduledThreadPoolExecutor;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
|
||||
/**
|
||||
* Service that handles writes to the timeline service and writes them to the
|
||||
* backing storage for a given YARN application.
|
||||
@ -36,8 +47,16 @@
|
||||
@Private
|
||||
@Unstable
|
||||
public class AppLevelTimelineCollector extends TimelineCollector {
|
||||
private static final Log LOG = LogFactory.getLog(TimelineCollector.class);
|
||||
|
||||
private final static int AGGREGATION_EXECUTOR_NUM_THREADS = 1;
|
||||
private final static int AGGREGATION_EXECUTOR_EXEC_INTERVAL_SECS = 15;
|
||||
private static Set<String> entityTypesSkipAggregation
|
||||
= initializeSkipSet();
|
||||
|
||||
private final ApplicationId appId;
|
||||
private final TimelineCollectorContext context;
|
||||
private ScheduledThreadPoolExecutor appAggregationExecutor;
|
||||
|
||||
public AppLevelTimelineCollector(ApplicationId appId) {
|
||||
super(AppLevelTimelineCollector.class.getName() + " - " + appId.toString());
|
||||
@ -46,6 +65,14 @@ public AppLevelTimelineCollector(ApplicationId appId) {
|
||||
context = new TimelineCollectorContext();
|
||||
}
|
||||
|
||||
private static Set<String> initializeSkipSet() {
|
||||
Set<String> result = new HashSet<>();
|
||||
result.add(TimelineEntityType.YARN_APPLICATION.toString());
|
||||
result.add(TimelineEntityType.YARN_FLOW_RUN.toString());
|
||||
result.add(TimelineEntityType.YARN_FLOW_ACTIVITY.toString());
|
||||
return result;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void serviceInit(Configuration conf) throws Exception {
|
||||
context.setClusterId(conf.get(YarnConfiguration.RM_CLUSTER_ID,
|
||||
@ -60,11 +87,25 @@ protected void serviceInit(Configuration conf) throws Exception {
|
||||
|
||||
@Override
|
||||
protected void serviceStart() throws Exception {
|
||||
// Launch the aggregation thread
|
||||
appAggregationExecutor = new ScheduledThreadPoolExecutor(
|
||||
AppLevelTimelineCollector.AGGREGATION_EXECUTOR_NUM_THREADS,
|
||||
new ThreadFactoryBuilder()
|
||||
.setNameFormat("TimelineCollector Aggregation thread #%d")
|
||||
.build());
|
||||
appAggregationExecutor.scheduleAtFixedRate(new AppLevelAggregator(), 0,
|
||||
AppLevelTimelineCollector.AGGREGATION_EXECUTOR_EXEC_INTERVAL_SECS,
|
||||
TimeUnit.SECONDS);
|
||||
super.serviceStart();
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void serviceStop() throws Exception {
|
||||
appAggregationExecutor.shutdown();
|
||||
if (!appAggregationExecutor.awaitTermination(10, TimeUnit.SECONDS)) {
|
||||
LOG.info("App-level aggregator shutdown timed out, shutdown now. ");
|
||||
appAggregationExecutor.shutdownNow();
|
||||
}
|
||||
super.serviceStop();
|
||||
}
|
||||
|
||||
@ -73,4 +114,35 @@ public TimelineCollectorContext getTimelineEntityContext() {
|
||||
return context;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected Set<String> getEntityTypesSkipAggregation() {
|
||||
return entityTypesSkipAggregation;
|
||||
}
|
||||
|
||||
private class AppLevelAggregator implements Runnable {
|
||||
|
||||
@Override
|
||||
public void run() {
|
||||
if (LOG.isDebugEnabled()) {
|
||||
LOG.debug("App-level real-time aggregating");
|
||||
}
|
||||
try {
|
||||
TimelineCollectorContext currContext = getTimelineEntityContext();
|
||||
TimelineEntity resultEntity = TimelineCollector.aggregateWithoutGroupId(
|
||||
getAggregationGroups(), currContext.getAppId(),
|
||||
TimelineEntityType.YARN_APPLICATION.toString());
|
||||
TimelineEntities entities = new TimelineEntities();
|
||||
entities.addEntity(resultEntity);
|
||||
getWriter().write(currContext.getClusterId(), currContext.getUserId(),
|
||||
currContext.getFlowName(), currContext.getFlowVersion(),
|
||||
currContext.getFlowRunId(), currContext.getAppId(), entities);
|
||||
} catch (Exception e) {
|
||||
LOG.error("Error aggregating timeline metrics", e);
|
||||
}
|
||||
if (LOG.isDebugEnabled()) {
|
||||
LOG.debug("App-level real-time aggregation complete");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -19,6 +19,12 @@
|
||||
package org.apache.hadoop.yarn.server.timelineservice.collector;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.HashMap;
|
||||
import java.util.HashSet;
|
||||
import java.util.Map;
|
||||
import java.util.Set;
|
||||
import java.util.concurrent.ConcurrentHashMap;
|
||||
import java.util.concurrent.ConcurrentMap;
|
||||
|
||||
import org.apache.commons.logging.Log;
|
||||
import org.apache.commons.logging.LogFactory;
|
||||
@ -27,7 +33,10 @@
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.security.UserGroupInformation;
|
||||
import org.apache.hadoop.service.CompositeService;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetricOperation;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineWriteResponse;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.TimelineWriter;
|
||||
|
||||
@ -41,9 +50,15 @@
|
||||
@Private
|
||||
@Unstable
|
||||
public abstract class TimelineCollector extends CompositeService {
|
||||
|
||||
private static final Log LOG = LogFactory.getLog(TimelineCollector.class);
|
||||
public static final String SEPARATOR = "_";
|
||||
|
||||
private TimelineWriter writer;
|
||||
private ConcurrentMap<String, AggregationStatusTable> aggregationGroups
|
||||
= new ConcurrentHashMap<>();
|
||||
private static Set<String> entityTypesSkipAggregation
|
||||
= new HashSet<>();
|
||||
|
||||
public TimelineCollector(String name) {
|
||||
super(name);
|
||||
@ -68,6 +83,28 @@ protected void setWriter(TimelineWriter w) {
|
||||
this.writer = w;
|
||||
}
|
||||
|
||||
protected TimelineWriter getWriter() {
|
||||
return writer;
|
||||
}
|
||||
|
||||
protected Map<String, AggregationStatusTable> getAggregationGroups() {
|
||||
return aggregationGroups;
|
||||
}
|
||||
|
||||
/**
|
||||
* Method to decide the set of timeline entity types the collector should
|
||||
* skip on aggregations. Subclasses may want to override this method to
|
||||
* customize their own behaviors.
|
||||
*
|
||||
* @return A set of strings consists of all types the collector should skip.
|
||||
*/
|
||||
protected Set<String> getEntityTypesSkipAggregation() {
|
||||
return entityTypesSkipAggregation;
|
||||
}
|
||||
|
||||
public abstract TimelineCollectorContext getTimelineEntityContext();
|
||||
|
||||
|
||||
/**
|
||||
* Handles entity writes. These writes are synchronous and are written to the
|
||||
* backing storage without buffering/batching. If any entity already exists,
|
||||
@ -90,8 +127,12 @@ public TimelineWriteResponse putEntities(TimelineEntities entities,
|
||||
LOG.debug("putEntities(entities=" + entities + ", callerUgi="
|
||||
+ callerUgi + ")");
|
||||
}
|
||||
|
||||
TimelineCollectorContext context = getTimelineEntityContext();
|
||||
|
||||
// Update application metrics for aggregation
|
||||
updateAggregateStatus(entities, aggregationGroups,
|
||||
getEntityTypesSkipAggregation());
|
||||
|
||||
return writer.write(context.getClusterId(), context.getUserId(),
|
||||
context.getFlowName(), context.getFlowVersion(), context.getFlowRunId(),
|
||||
context.getAppId(), entities);
|
||||
@ -117,6 +158,174 @@ public void putEntitiesAsync(TimelineEntities entities,
|
||||
}
|
||||
}
|
||||
|
||||
public abstract TimelineCollectorContext getTimelineEntityContext();
|
||||
/**
|
||||
* Aggregate all metrics in given timeline entities with no predefined states.
|
||||
*
|
||||
* @param entities Entities to aggregate
|
||||
* @param resultEntityId Id of the result entity
|
||||
* @param resultEntityType Type of the result entity
|
||||
* @param needsGroupIdInResult Marks if we want the aggregation group id in
|
||||
* each aggregated metrics.
|
||||
* @return A timeline entity that contains all aggregated TimelineMetric.
|
||||
*/
|
||||
public static TimelineEntity aggregateEntities(
|
||||
TimelineEntities entities, String resultEntityId,
|
||||
String resultEntityType, boolean needsGroupIdInResult) {
|
||||
ConcurrentMap<String, AggregationStatusTable> aggregationGroups
|
||||
= new ConcurrentHashMap<>();
|
||||
updateAggregateStatus(entities, aggregationGroups, null);
|
||||
if (needsGroupIdInResult) {
|
||||
return aggregate(aggregationGroups, resultEntityId, resultEntityType);
|
||||
} else {
|
||||
return aggregateWithoutGroupId(
|
||||
aggregationGroups, resultEntityId, resultEntityType);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Update the aggregation status table for a timeline collector.
|
||||
*
|
||||
* @param entities Entities to update
|
||||
* @param aggregationGroups Aggregation status table
|
||||
* @param typesToSkip Entity types that we can safely assume to skip updating
|
||||
*/
|
||||
static void updateAggregateStatus(
|
||||
TimelineEntities entities,
|
||||
ConcurrentMap<String, AggregationStatusTable> aggregationGroups,
|
||||
Set<String> typesToSkip) {
|
||||
for (TimelineEntity e : entities.getEntities()) {
|
||||
if ((typesToSkip != null && typesToSkip.contains(e.getType()))
|
||||
|| e.getMetrics().isEmpty()) {
|
||||
continue;
|
||||
}
|
||||
AggregationStatusTable aggrTable = aggregationGroups.get(e.getType());
|
||||
if (aggrTable == null) {
|
||||
AggregationStatusTable table = new AggregationStatusTable();
|
||||
aggrTable = aggregationGroups.putIfAbsent(e.getType(),
|
||||
table);
|
||||
if (aggrTable == null) {
|
||||
aggrTable = table;
|
||||
}
|
||||
}
|
||||
aggrTable.update(e);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Aggregate internal status and generate timeline entities for the
|
||||
* aggregation results.
|
||||
*
|
||||
* @param aggregationGroups Aggregation status table
|
||||
* @param resultEntityId Id of the result entity
|
||||
* @param resultEntityType Type of the result entity
|
||||
* @return A timeline entity that contains all aggregated TimelineMetric.
|
||||
*/
|
||||
static TimelineEntity aggregate(
|
||||
Map<String, AggregationStatusTable> aggregationGroups,
|
||||
String resultEntityId, String resultEntityType) {
|
||||
TimelineEntity result = new TimelineEntity();
|
||||
result.setId(resultEntityId);
|
||||
result.setType(resultEntityType);
|
||||
for (Map.Entry<String, AggregationStatusTable> entry
|
||||
: aggregationGroups.entrySet()) {
|
||||
entry.getValue().aggregateAllTo(result, entry.getKey());
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Aggregate internal status and generate timeline entities for the
|
||||
* aggregation results. The result metrics will not have aggregation group
|
||||
* information.
|
||||
*
|
||||
* @param aggregationGroups Aggregation status table
|
||||
* @param resultEntityId Id of the result entity
|
||||
* @param resultEntityType Type of the result entity
|
||||
* @return A timeline entity that contains all aggregated TimelineMetric.
|
||||
*/
|
||||
static TimelineEntity aggregateWithoutGroupId(
|
||||
Map<String, AggregationStatusTable> aggregationGroups,
|
||||
String resultEntityId, String resultEntityType) {
|
||||
TimelineEntity result = new TimelineEntity();
|
||||
result.setId(resultEntityId);
|
||||
result.setType(resultEntityType);
|
||||
for (Map.Entry<String, AggregationStatusTable> entry
|
||||
: aggregationGroups.entrySet()) {
|
||||
entry.getValue().aggregateAllTo(result, "");
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// Note: In memory aggregation is performed in an eventually consistent
|
||||
// fashion.
|
||||
private static class AggregationStatusTable {
|
||||
// On aggregation, for each metric, aggregate all per-entity accumulated
|
||||
// metrics. We only use the id and type for TimelineMetrics in the key set
|
||||
// of this table.
|
||||
private ConcurrentMap<TimelineMetric, Map<String, TimelineMetric>>
|
||||
aggregateTable;
|
||||
|
||||
public AggregationStatusTable() {
|
||||
aggregateTable = new ConcurrentHashMap<>();
|
||||
}
|
||||
|
||||
public void update(TimelineEntity incoming) {
|
||||
String entityId = incoming.getId();
|
||||
for (TimelineMetric m : incoming.getMetrics()) {
|
||||
// Skip if the metric does not need aggregation
|
||||
if (m.getRealtimeAggregationOp() == TimelineMetricOperation.NOP) {
|
||||
continue;
|
||||
}
|
||||
// Update aggregateTable
|
||||
Map<String, TimelineMetric> aggrRow = aggregateTable.get(m);
|
||||
if (aggrRow == null) {
|
||||
Map<String, TimelineMetric> tempRow = new ConcurrentHashMap<>();
|
||||
aggrRow = aggregateTable.putIfAbsent(m, tempRow);
|
||||
if (aggrRow == null) {
|
||||
aggrRow = tempRow;
|
||||
}
|
||||
}
|
||||
aggrRow.put(entityId, m);
|
||||
}
|
||||
}
|
||||
|
||||
public TimelineEntity aggregateTo(TimelineMetric metric, TimelineEntity e,
|
||||
String aggregationGroupId) {
|
||||
if (metric.getRealtimeAggregationOp() == TimelineMetricOperation.NOP) {
|
||||
return e;
|
||||
}
|
||||
Map<String, TimelineMetric> aggrRow = aggregateTable.get(metric);
|
||||
if (aggrRow != null) {
|
||||
TimelineMetric aggrMetric = new TimelineMetric();
|
||||
if (aggregationGroupId.length() > 0) {
|
||||
aggrMetric.setId(metric.getId() + SEPARATOR + aggregationGroupId);
|
||||
} else {
|
||||
aggrMetric.setId(metric.getId());
|
||||
}
|
||||
aggrMetric.setRealtimeAggregationOp(TimelineMetricOperation.NOP);
|
||||
Map<Object, Object> status = new HashMap<>();
|
||||
for (TimelineMetric m : aggrRow.values()) {
|
||||
TimelineMetric.aggregateTo(m, aggrMetric, status);
|
||||
// getRealtimeAggregationOp returns an enum so we can directly
|
||||
// compare with "!=".
|
||||
if (m.getRealtimeAggregationOp()
|
||||
!= aggrMetric.getRealtimeAggregationOp()) {
|
||||
aggrMetric.setRealtimeAggregationOp(m.getRealtimeAggregationOp());
|
||||
}
|
||||
}
|
||||
Set<TimelineMetric> metrics = e.getMetrics();
|
||||
metrics.remove(aggrMetric);
|
||||
metrics.add(aggrMetric);
|
||||
}
|
||||
return e;
|
||||
}
|
||||
|
||||
public TimelineEntity aggregateAllTo(TimelineEntity e,
|
||||
String aggregationGroupId) {
|
||||
for (TimelineMetric m : aggregateTable.keySet()) {
|
||||
aggregateTo(m, e, aggregationGroupId);
|
||||
}
|
||||
return e;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -24,5 +24,5 @@
|
||||
*
|
||||
*/
|
||||
public enum TimelineAggregationTrack {
|
||||
FLOW, USER, QUEUE
|
||||
APP, FLOW, USER, QUEUE
|
||||
}
|
||||
|
@ -0,0 +1,127 @@
|
||||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.collector;
|
||||
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetricOperation;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric;
|
||||
import org.junit.Test;
|
||||
|
||||
import java.util.HashSet;
|
||||
import java.util.Set;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.fail;
|
||||
|
||||
public class TestTimelineCollector {
|
||||
|
||||
private TimelineEntities generateTestEntities(int groups, int entities) {
|
||||
TimelineEntities te = new TimelineEntities();
|
||||
for (int j = 0; j < groups; j++) {
|
||||
for (int i = 0; i < entities; i++) {
|
||||
TimelineEntity entity = new TimelineEntity();
|
||||
String containerId = "container_1000178881110_2002_" + i;
|
||||
entity.setId(containerId);
|
||||
String entityType = "TEST_" + j;
|
||||
entity.setType(entityType);
|
||||
long cTime = 1425016501000L;
|
||||
entity.setCreatedTime(cTime);
|
||||
|
||||
// add metrics
|
||||
Set<TimelineMetric> metrics = new HashSet<>();
|
||||
TimelineMetric m1 = new TimelineMetric();
|
||||
m1.setId("HDFS_BYTES_WRITE");
|
||||
m1.setRealtimeAggregationOp(TimelineMetricOperation.SUM);
|
||||
long ts = System.currentTimeMillis();
|
||||
m1.addValue(ts - 20000, 100L);
|
||||
metrics.add(m1);
|
||||
|
||||
TimelineMetric m2 = new TimelineMetric();
|
||||
m2.setId("VCORES_USED");
|
||||
m2.setRealtimeAggregationOp(TimelineMetricOperation.SUM);
|
||||
m2.addValue(ts - 20000, 3L);
|
||||
metrics.add(m2);
|
||||
|
||||
// m3 should not show up in the aggregation
|
||||
TimelineMetric m3 = new TimelineMetric();
|
||||
m3.setId("UNRELATED_VALUES");
|
||||
m3.addValue(ts - 20000, 3L);
|
||||
metrics.add(m3);
|
||||
|
||||
TimelineMetric m4 = new TimelineMetric();
|
||||
m4.setId("TXN_FINISH_TIME");
|
||||
m4.setRealtimeAggregationOp(TimelineMetricOperation.MAX);
|
||||
m4.addValue(ts - 20000, i);
|
||||
metrics.add(m4);
|
||||
|
||||
entity.addMetrics(metrics);
|
||||
te.addEntity(entity);
|
||||
}
|
||||
}
|
||||
|
||||
return te;
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testAggregation() throws Exception {
|
||||
// Test aggregation with multiple groups.
|
||||
int groups = 3;
|
||||
int n = 50;
|
||||
TimelineEntities testEntities = generateTestEntities(groups, n);
|
||||
TimelineEntity resultEntity = TimelineCollector.aggregateEntities(
|
||||
testEntities, "test_result", "TEST_AGGR", true);
|
||||
assertEquals(resultEntity.getMetrics().size(), groups * 3);
|
||||
|
||||
for (int i = 0; i < groups; i++) {
|
||||
Set<TimelineMetric> metrics = resultEntity.getMetrics();
|
||||
for (TimelineMetric m : metrics) {
|
||||
if (m.getId().startsWith("HDFS_BYTES_WRITE")) {
|
||||
assertEquals(100 * n, m.getSingleDataValue().intValue());
|
||||
} else if (m.getId().startsWith("VCORES_USED")) {
|
||||
assertEquals(3 * n, m.getSingleDataValue().intValue());
|
||||
} else if (m.getId().startsWith("TXN_FINISH_TIME")) {
|
||||
assertEquals(n - 1, m.getSingleDataValue());
|
||||
} else {
|
||||
fail("Unrecognized metric! " + m.getId());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Test aggregation with a single group.
|
||||
TimelineEntities testEntities1 = generateTestEntities(1, n);
|
||||
TimelineEntity resultEntity1 = TimelineCollector.aggregateEntities(
|
||||
testEntities1, "test_result", "TEST_AGGR", false);
|
||||
assertEquals(resultEntity1.getMetrics().size(), 3);
|
||||
|
||||
Set<TimelineMetric> metrics = resultEntity1.getMetrics();
|
||||
for (TimelineMetric m : metrics) {
|
||||
if (m.getId().equals("HDFS_BYTES_WRITE")) {
|
||||
assertEquals(100 * n, m.getSingleDataValue().intValue());
|
||||
} else if (m.getId().equals("VCORES_USED")) {
|
||||
assertEquals(3 * n, m.getSingleDataValue().intValue());
|
||||
} else if (m.getId().equals("TXN_FINISH_TIME")) {
|
||||
assertEquals(n - 1, m.getSingleDataValue());
|
||||
} else {
|
||||
fail("Unrecognized metric! " + m.getId());
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
@ -25,11 +25,15 @@
|
||||
import java.nio.file.Files;
|
||||
import java.nio.file.Path;
|
||||
import java.nio.file.Paths;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
import org.apache.commons.io.FileUtils;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetricOperation;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric;
|
||||
import org.apache.hadoop.yarn.conf.YarnConfiguration;
|
||||
import org.apache.hadoop.yarn.util.timeline.TimelineUtils;
|
||||
import org.junit.Test;
|
||||
@ -51,6 +55,26 @@ public void testWriteEntityToFile() throws Exception {
|
||||
entity.setCreatedTime(1425016501000L);
|
||||
te.addEntity(entity);
|
||||
|
||||
TimelineMetric metric = new TimelineMetric();
|
||||
String metricId = "CPU";
|
||||
metric.setId(metricId);
|
||||
metric.setType(TimelineMetric.Type.SINGLE_VALUE);
|
||||
metric.setRealtimeAggregationOp(TimelineMetricOperation.SUM);
|
||||
metric.addValue(1425016501000L, 1234567L);
|
||||
|
||||
TimelineEntity entity2 = new TimelineEntity();
|
||||
String id2 = "metric";
|
||||
String type2 = "app";
|
||||
entity2.setId(id2);
|
||||
entity2.setType(type2);
|
||||
entity2.setCreatedTime(1425016503000L);
|
||||
entity2.addMetric(metric);
|
||||
te.addEntity(entity2);
|
||||
|
||||
Map<String, TimelineMetric> aggregatedMetrics =
|
||||
new HashMap<String, TimelineMetric>();
|
||||
aggregatedMetrics.put(metricId, metric);
|
||||
|
||||
FileSystemTimelineWriterImpl fsi = null;
|
||||
try {
|
||||
fsi = new FileSystemTimelineWriterImpl();
|
||||
@ -68,11 +92,27 @@ public void testWriteEntityToFile() throws Exception {
|
||||
assertTrue(f.exists() && !f.isDirectory());
|
||||
List<String> data = Files.readAllLines(path, StandardCharsets.UTF_8);
|
||||
// ensure there's only one entity + 1 new line
|
||||
assertTrue(data.size() == 2);
|
||||
assertTrue("data size is:" + data.size(), data.size() == 2);
|
||||
String d = data.get(0);
|
||||
// confirm the contents same as what was written
|
||||
assertEquals(d, TimelineUtils.dumpTimelineRecordtoJSON(entity));
|
||||
|
||||
// verify aggregated metrics
|
||||
String fileName2 = fsi.getOutputRoot() +
|
||||
"/entities/cluster_id/user_id/flow_name/flow_version/12345678/app_id/"
|
||||
+ type2 + "/" + id2 +
|
||||
FileSystemTimelineWriterImpl.TIMELINE_SERVICE_STORAGE_EXTENSION;
|
||||
Path path2 = Paths.get(fileName2);
|
||||
File file = new File(fileName2);
|
||||
assertTrue(file.exists() && !file.isDirectory());
|
||||
List<String> data2 = Files.readAllLines(path2, StandardCharsets.UTF_8);
|
||||
// ensure there's only one entity + 1 new line
|
||||
assertTrue("data size is:" + data.size(), data2.size() == 2);
|
||||
String metricToString = data2.get(0);
|
||||
// confirm the contents same as what was written
|
||||
assertEquals(metricToString,
|
||||
TimelineUtils.dumpTimelineRecordtoJSON(entity2));
|
||||
|
||||
// delete the directory
|
||||
File outputDir = new File(fsi.getOutputRoot());
|
||||
FileUtils.deleteDirectory(outputDir);
|
||||
@ -84,4 +124,5 @@ public void testWriteEntityToFile() throws Exception {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -42,6 +42,7 @@
|
||||
import org.apache.hadoop.hbase.client.Scan;
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.api.records.ApplicationId;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetricOperation;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.ApplicationEntity;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||
@ -539,6 +540,26 @@ public void testWriteApplicationToHBase() throws Exception {
|
||||
metrics.add(m1);
|
||||
entity.addMetrics(metrics);
|
||||
|
||||
// add aggregated metrics
|
||||
TimelineEntity aggEntity = new TimelineEntity();
|
||||
String type = TimelineEntityType.YARN_APPLICATION.toString();
|
||||
aggEntity.setId(appId);
|
||||
aggEntity.setType(type);
|
||||
long cTime2 = 1425016502000L;
|
||||
long mTime2 = 1425026902000L;
|
||||
aggEntity.setCreatedTime(cTime2);
|
||||
|
||||
TimelineMetric aggMetric = new TimelineMetric();
|
||||
aggMetric.setId("MEM_USAGE");
|
||||
Map<Long, Number> aggMetricValues = new HashMap<Long, Number>();
|
||||
ts = System.currentTimeMillis();
|
||||
aggMetricValues.put(ts - 120000, 102400000);
|
||||
aggMetric.setType(Type.SINGLE_VALUE);
|
||||
aggMetric.setRealtimeAggregationOp(TimelineMetricOperation.SUM);
|
||||
aggMetric.setValues(aggMetricValues);
|
||||
Set<TimelineMetric> aggMetrics = new HashSet<>();
|
||||
aggMetrics.add(aggMetric);
|
||||
entity.addMetrics(aggMetrics);
|
||||
te.addEntity(entity);
|
||||
|
||||
HBaseTimelineWriterImpl hbi = null;
|
||||
@ -564,7 +585,7 @@ public void testWriteApplicationToHBase() throws Exception {
|
||||
Result result = new ApplicationTable().getResult(c1, conn, get);
|
||||
|
||||
assertTrue(result != null);
|
||||
assertEquals(15, result.size());
|
||||
assertEquals(16, result.size());
|
||||
|
||||
// check the row key
|
||||
byte[] row1 = result.getRow();
|
||||
@ -652,11 +673,18 @@ public void testWriteApplicationToHBase() throws Exception {
|
||||
assertEquals(conf, conf2);
|
||||
|
||||
Set<TimelineMetric> metrics2 = e1.getMetrics();
|
||||
assertEquals(metrics, metrics2);
|
||||
assertEquals(2, metrics2.size());
|
||||
for (TimelineMetric metric2 : metrics2) {
|
||||
Map<Long, Number> metricValues2 = metric2.getValues();
|
||||
assertTrue(metric2.getId().equals("MAP_SLOT_MILLIS") ||
|
||||
metric2.getId().equals("MEM_USAGE"));
|
||||
if (metric2.getId().equals("MAP_SLOT_MILLIS")) {
|
||||
matchMetrics(metricValues, metricValues2);
|
||||
}
|
||||
if (metric2.getId().equals("MEM_USAGE")) {
|
||||
matchMetrics(aggMetricValues, metricValues2);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
if (hbi != null) {
|
||||
hbi.stop();
|
||||
@ -724,7 +752,6 @@ public void testWriteEntityToHBase() throws Exception {
|
||||
m1.setValues(metricValues);
|
||||
metrics.add(m1);
|
||||
entity.addMetrics(metrics);
|
||||
|
||||
te.addEntity(entity);
|
||||
|
||||
HBaseTimelineWriterImpl hbi = null;
|
||||
|
Loading…
Reference in New Issue
Block a user