HADOOP-11847 Enhance raw coder allowing to read least required inputs in decoding. Contributed by Kai Zheng

This commit is contained in:
Kai Zheng 2015-05-26 22:45:19 +08:00 committed by Zhe Zhang
parent 5a391e1d25
commit 4ad484883f
14 changed files with 430 additions and 187 deletions

View File

@ -59,3 +59,6 @@
HADOOP-12029. Remove chunkSize from ECSchema as its not required for coders
(vinayakumarb)
HADOOP-11847. Enhance raw coder allowing to read least required inputs in decoding.
(Kai Zheng)

View File

@ -60,12 +60,13 @@ public void release() {
}
/**
* Ensure output buffer filled with ZERO bytes fully in chunkSize.
* @param buffer a buffer ready to write chunk size bytes
* Ensure a buffer filled with ZERO bytes from current readable/writable
* position.
* @param buffer a buffer ready to read / write certain size bytes
* @return the buffer itself, with ZERO bytes written, the position and limit
* are not changed after the call
*/
protected ByteBuffer resetOutputBuffer(ByteBuffer buffer) {
protected ByteBuffer resetBuffer(ByteBuffer buffer) {
int pos = buffer.position();
for (int i = pos; i < buffer.limit(); ++i) {
buffer.put((byte) 0);
@ -77,7 +78,7 @@ protected ByteBuffer resetOutputBuffer(ByteBuffer buffer) {
/**
* Ensure the buffer (either input or output) ready to read or write with ZERO
* bytes fully in chunkSize.
* bytes fully in specified length of len.
* @param buffer bytes array buffer
* @return the buffer itself
*/
@ -92,11 +93,16 @@ protected byte[] resetBuffer(byte[] buffer, int offset, int len) {
/**
* Check and ensure the buffers are of the length specified by dataLen.
* @param buffers
* @param allowNull
* @param dataLen
*/
protected void ensureLength(ByteBuffer[] buffers, int dataLen) {
protected void ensureLength(ByteBuffer[] buffers,
boolean allowNull, int dataLen) {
for (int i = 0; i < buffers.length; ++i) {
if (buffers[i].remaining() != dataLen) {
if (buffers[i] == null && !allowNull) {
throw new HadoopIllegalArgumentException(
"Invalid buffer found, not allowing null");
} else if (buffers[i] != null && buffers[i].remaining() != dataLen) {
throw new HadoopIllegalArgumentException(
"Invalid buffer, not of length " + dataLen);
}
@ -106,11 +112,16 @@ protected void ensureLength(ByteBuffer[] buffers, int dataLen) {
/**
* Check and ensure the buffers are of the length specified by dataLen.
* @param buffers
* @param allowNull
* @param dataLen
*/
protected void ensureLength(byte[][] buffers, int dataLen) {
protected void ensureLength(byte[][] buffers,
boolean allowNull, int dataLen) {
for (int i = 0; i < buffers.length; ++i) {
if (buffers[i].length != dataLen) {
if (buffers[i] == null && !allowNull) {
throw new HadoopIllegalArgumentException(
"Invalid buffer found, not allowing null");
} else if (buffers[i] != null && buffers[i].length != dataLen) {
throw new HadoopIllegalArgumentException(
"Invalid buffer not of length " + dataLen);
}

View File

@ -21,6 +21,7 @@
import org.apache.hadoop.io.erasurecode.ECChunk;
import java.nio.ByteBuffer;
import java.util.Arrays;
/**
* An abstract raw erasure decoder that's to be inherited by new decoders.
@ -38,14 +39,16 @@ public AbstractRawErasureDecoder(int numDataUnits, int numParityUnits) {
public void decode(ByteBuffer[] inputs, int[] erasedIndexes,
ByteBuffer[] outputs) {
checkParameters(inputs, erasedIndexes, outputs);
int dataLen = inputs[0].remaining();
ByteBuffer validInput = findFirstValidInput(inputs);
int dataLen = validInput.remaining();
if (dataLen == 0) {
return;
}
ensureLength(inputs, dataLen);
ensureLength(outputs, dataLen);
ensureLength(inputs, true, dataLen);
ensureLength(outputs, false, dataLen);
boolean usingDirectBuffer = inputs[0].isDirect();
boolean usingDirectBuffer = validInput.isDirect();
if (usingDirectBuffer) {
doDecode(inputs, erasedIndexes, outputs);
return;
@ -59,8 +62,10 @@ public void decode(ByteBuffer[] inputs, int[] erasedIndexes,
ByteBuffer buffer;
for (int i = 0; i < inputs.length; ++i) {
buffer = inputs[i];
inputOffsets[i] = buffer.position();
newInputs[i] = buffer.array();
if (buffer != null) {
inputOffsets[i] = buffer.position();
newInputs[i] = buffer.array();
}
}
for (int i = 0; i < outputs.length; ++i) {
@ -74,7 +79,10 @@ public void decode(ByteBuffer[] inputs, int[] erasedIndexes,
for (int i = 0; i < inputs.length; ++i) {
buffer = inputs[i];
buffer.position(inputOffsets[i] + dataLen); // dataLen bytes consumed
if (buffer != null) {
// dataLen bytes consumed
buffer.position(inputOffsets[i] + dataLen);
}
}
}
@ -90,12 +98,14 @@ protected abstract void doDecode(ByteBuffer[] inputs, int[] erasedIndexes,
@Override
public void decode(byte[][] inputs, int[] erasedIndexes, byte[][] outputs) {
checkParameters(inputs, erasedIndexes, outputs);
int dataLen = inputs[0].length;
byte[] validInput = findFirstValidInput(inputs);
int dataLen = validInput.length;
if (dataLen == 0) {
return;
}
ensureLength(inputs, dataLen);
ensureLength(outputs, dataLen);
ensureLength(inputs, true, dataLen);
ensureLength(outputs, false, dataLen);
int[] inputOffsets = new int[inputs.length]; // ALL ZERO
int[] outputOffsets = new int[outputs.length]; // ALL ZERO
@ -148,5 +158,50 @@ protected void checkParameters(Object[] inputs, int[] erasedIndexes,
throw new HadoopIllegalArgumentException(
"Too many erased, not recoverable");
}
int validInputs = 0;
for (int i = 0; i < inputs.length; ++i) {
if (inputs[i] != null) {
validInputs += 1;
}
}
if (validInputs < getNumDataUnits()) {
throw new HadoopIllegalArgumentException(
"No enough valid inputs are provided, not recoverable");
}
}
/**
* Get indexes into inputs array for items marked as null, either erased or
* not to read.
* @return indexes into inputs array
*/
protected int[] getErasedOrNotToReadIndexes(Object[] inputs) {
int[] invalidIndexes = new int[inputs.length];
int idx = 0;
for (int i = 0; i < inputs.length; i++) {
if (inputs[i] == null) {
invalidIndexes[idx++] = i;
}
}
return Arrays.copyOf(invalidIndexes, idx);
}
/**
* Find the valid input from all the inputs.
* @param inputs
* @return the first valid input
*/
protected static <T> T findFirstValidInput(T[] inputs) {
for (int i = 0; i < inputs.length; i++) {
if (inputs[i] != null) {
return inputs[i];
}
}
throw new HadoopIllegalArgumentException(
"Invalid inputs are found, all being null");
}
}

View File

@ -41,8 +41,8 @@ public void encode(ByteBuffer[] inputs, ByteBuffer[] outputs) {
if (dataLen == 0) {
return;
}
ensureLength(inputs, dataLen);
ensureLength(outputs, dataLen);
ensureLength(inputs, false, dataLen);
ensureLength(outputs, false, dataLen);
boolean usingDirectBuffer = inputs[0].isDirect();
if (usingDirectBuffer) {
@ -90,8 +90,8 @@ public void encode(byte[][] inputs, byte[][] outputs) {
if (dataLen == 0) {
return;
}
ensureLength(inputs, dataLen);
ensureLength(outputs, dataLen);
ensureLength(inputs, false, dataLen);
ensureLength(outputs, false, dataLen);
int[] inputOffsets = new int[inputs.length]; // ALL ZERO
int[] outputOffsets = new int[outputs.length]; // ALL ZERO

View File

@ -17,6 +17,7 @@
*/
package org.apache.hadoop.io.erasurecode.rawcoder;
import org.apache.hadoop.HadoopIllegalArgumentException;
import org.apache.hadoop.io.erasurecode.rawcoder.util.RSUtil;
import java.nio.ByteBuffer;
@ -25,35 +26,64 @@
* A raw erasure decoder in RS code scheme in pure Java in case native one
* isn't available in some environment. Please always use native implementations
* when possible.
*
* Currently this implementation will compute and decode not to read units
* unnecessarily due to the underlying implementation limit in GF. This will be
* addressed in HADOOP-11871.
*/
public class RSRawDecoder extends AbstractRawErasureDecoder {
// To describe and calculate the needed Vandermonde matrix
private int[] errSignature;
private int[] primitivePower;
/**
* We need a set of reusable buffers either for the bytes array
* decoding version or direct buffer decoding version. Normally not both.
*
* For output, in addition to the valid buffers from the caller
* passed from above, we need to provide extra buffers for the internal
* decoding implementation. For output, the caller should provide no more
* than numParityUnits but at least one buffers. And the left buffers will be
* borrowed from either bytesArrayBuffers, for the bytes array version.
*
*/
// Reused buffers for decoding with bytes arrays
private byte[][] bytesArrayBuffers = new byte[getNumParityUnits()][];
private byte[][] adjustedByteArrayOutputsParameter =
new byte[getNumParityUnits()][];
private int[] adjustedOutputOffsets = new int[getNumParityUnits()];
// Reused buffers for decoding with direct ByteBuffers
private ByteBuffer[] directBuffers = new ByteBuffer[getNumParityUnits()];
private ByteBuffer[] adjustedDirectBufferOutputsParameter =
new ByteBuffer[getNumParityUnits()];
public RSRawDecoder(int numDataUnits, int numParityUnits) {
super(numDataUnits, numParityUnits);
assert (getNumDataUnits() + getNumParityUnits() < RSUtil.GF.getFieldSize());
if (numDataUnits + numParityUnits >= RSUtil.GF.getFieldSize()) {
throw new HadoopIllegalArgumentException(
"Invalid numDataUnits and numParityUnits");
}
this.errSignature = new int[numParityUnits];
this.primitivePower = RSUtil.getPrimitivePower(numDataUnits,
numParityUnits);
}
@Override
protected void doDecode(ByteBuffer[] inputs, int[] erasedIndexes,
private void doDecodeImpl(ByteBuffer[] inputs, int[] erasedIndexes,
ByteBuffer[] outputs) {
ByteBuffer valid = findFirstValidInput(inputs);
int dataLen = valid.remaining();
for (int i = 0; i < erasedIndexes.length; i++) {
errSignature[i] = primitivePower[erasedIndexes[i]];
RSUtil.GF.substitute(inputs, outputs[i], primitivePower[i]);
RSUtil.GF.substitute(inputs, dataLen, outputs[i], primitivePower[i]);
}
RSUtil.GF.solveVandermondeSystem(errSignature,
outputs, erasedIndexes.length);
}
@Override
protected void doDecode(byte[][] inputs, int[] inputOffsets,
private void doDecodeImpl(byte[][] inputs, int[] inputOffsets,
int dataLen, int[] erasedIndexes,
byte[][] outputs, int[] outputOffsets) {
for (int i = 0; i < erasedIndexes.length; i++) {
@ -63,6 +93,124 @@ protected void doDecode(byte[][] inputs, int[] inputOffsets,
}
RSUtil.GF.solveVandermondeSystem(errSignature, outputs, outputOffsets,
erasedIndexes.length, dataLen);
erasedIndexes.length, dataLen);
}
@Override
protected void doDecode(byte[][] inputs, int[] inputOffsets,
int dataLen, int[] erasedIndexes,
byte[][] outputs, int[] outputOffsets) {
/**
* As passed parameters are friendly to callers but not to the underlying
* implementations, so we have to adjust them before calling doDecodeImpl.
*/
int[] erasedOrNotToReadIndexes = getErasedOrNotToReadIndexes(inputs);
// Prepare for adjustedOutputsParameter
// First reset the positions needed this time
for (int i = 0; i < erasedOrNotToReadIndexes.length; i++) {
adjustedByteArrayOutputsParameter[i] = null;
adjustedOutputOffsets[i] = 0;
}
// Use the caller passed buffers in erasedIndexes positions
for (int outputIdx = 0, i = 0; i < erasedIndexes.length; i++) {
boolean found = false;
for (int j = 0; j < erasedOrNotToReadIndexes.length; j++) {
// If this index is one requested by the caller via erasedIndexes, then
// we use the passed output buffer to avoid copying data thereafter.
if (erasedIndexes[i] == erasedOrNotToReadIndexes[j]) {
found = true;
adjustedByteArrayOutputsParameter[j] = resetBuffer(
outputs[outputIdx], outputOffsets[outputIdx], dataLen);
adjustedOutputOffsets[j] = outputOffsets[outputIdx];
outputIdx++;
}
}
if (!found) {
throw new HadoopIllegalArgumentException(
"Inputs not fully corresponding to erasedIndexes in null places");
}
}
// Use shared buffers for other positions (not set yet)
for (int bufferIdx = 0, i = 0; i < erasedOrNotToReadIndexes.length; i++) {
if (adjustedByteArrayOutputsParameter[i] == null) {
adjustedByteArrayOutputsParameter[i] = resetBuffer(
checkGetBytesArrayBuffer(bufferIdx, dataLen), 0, dataLen);
adjustedOutputOffsets[i] = 0; // Always 0 for such temp output
bufferIdx++;
}
}
doDecodeImpl(inputs, inputOffsets, dataLen, erasedOrNotToReadIndexes,
adjustedByteArrayOutputsParameter, adjustedOutputOffsets);
}
@Override
protected void doDecode(ByteBuffer[] inputs, int[] erasedIndexes,
ByteBuffer[] outputs) {
ByteBuffer validInput = findFirstValidInput(inputs);
int dataLen = validInput.remaining();
/**
* As passed parameters are friendly to callers but not to the underlying
* implementations, so we have to adjust them before calling doDecodeImpl.
*/
int[] erasedOrNotToReadIndexes = getErasedOrNotToReadIndexes(inputs);
// Prepare for adjustedDirectBufferOutputsParameter
// First reset the positions needed this time
for (int i = 0; i < erasedOrNotToReadIndexes.length; i++) {
adjustedDirectBufferOutputsParameter[i] = null;
}
// Use the caller passed buffers in erasedIndexes positions
for (int outputIdx = 0, i = 0; i < erasedIndexes.length; i++) {
boolean found = false;
for (int j = 0; j < erasedOrNotToReadIndexes.length; j++) {
// If this index is one requested by the caller via erasedIndexes, then
// we use the passed output buffer to avoid copying data thereafter.
if (erasedIndexes[i] == erasedOrNotToReadIndexes[j]) {
found = true;
adjustedDirectBufferOutputsParameter[j] =
resetBuffer(outputs[outputIdx++]);
}
}
if (!found) {
throw new HadoopIllegalArgumentException(
"Inputs not fully corresponding to erasedIndexes in null places");
}
}
// Use shared buffers for other positions (not set yet)
for (int bufferIdx = 0, i = 0; i < erasedOrNotToReadIndexes.length; i++) {
if (adjustedDirectBufferOutputsParameter[i] == null) {
ByteBuffer buffer = checkGetDirectBuffer(bufferIdx, dataLen);
buffer.position(0);
buffer.limit(dataLen);
adjustedDirectBufferOutputsParameter[i] = resetBuffer(buffer);
bufferIdx++;
}
}
doDecodeImpl(inputs, erasedOrNotToReadIndexes,
adjustedDirectBufferOutputsParameter);
}
private byte[] checkGetBytesArrayBuffer(int idx, int bufferLen) {
if (bytesArrayBuffers[idx] == null ||
bytesArrayBuffers[idx].length < bufferLen) {
bytesArrayBuffers[idx] = new byte[bufferLen];
}
return bytesArrayBuffers[idx];
}
private ByteBuffer checkGetDirectBuffer(int idx, int bufferLen) {
if (directBuffers[idx] == null ||
directBuffers[idx].capacity() < bufferLen) {
directBuffers[idx] = ByteBuffer.allocateDirect(bufferLen);
}
return directBuffers[idx];
}
}

View File

@ -32,6 +32,22 @@ public interface RawErasureDecoder extends RawErasureCoder {
/**
* Decode with inputs and erasedIndexes, generates outputs.
* How to prepare for inputs:
* 1. Create an array containing parity units + data units;
* 2. Set null in the array locations specified via erasedIndexes to indicate
* they're erased and no data are to read from;
* 3. Set null in the array locations for extra redundant items, as they're
* not necessary to read when decoding. For example in RS-6-3, if only 1
* unit is really erased, then we have 2 extra items as redundant. They can
* be set as null to indicate no data will be used from them.
*
* For an example using RS (6, 3), assuming sources (d0, d1, d2, d3, d4, d5)
* and parities (p0, p1, p2), d2 being erased. We can and may want to use only
* 6 units like (d1, d3, d4, d5, p0, p2) to recover d2. We will have:
* inputs = [p0, null(p1), p2, null(d0), d1, null(d2), d3, d4, d5]
* erasedIndexes = [5] // index of d2 into inputs array
* outputs = [a-writable-buffer]
*
* @param inputs inputs to read data from
* @param erasedIndexes indexes of erased units in the inputs array
* @param outputs outputs to write into for data generated according to
@ -41,7 +57,7 @@ public void decode(ByteBuffer[] inputs, int[] erasedIndexes,
ByteBuffer[] outputs);
/**
* Decode with inputs and erasedIndexes, generates outputs.
* Decode with inputs and erasedIndexes, generates outputs. More see above.
* @param inputs inputs to read data from
* @param erasedIndexes indexes of erased units in the inputs array
* @param outputs outputs to write into for data generated according to
@ -50,7 +66,7 @@ public void decode(ByteBuffer[] inputs, int[] erasedIndexes,
public void decode(byte[][] inputs, int[] erasedIndexes, byte[][] outputs);
/**
* Decode with inputs and erasedIndexes, generates outputs.
* Decode with inputs and erasedIndexes, generates outputs. More see above.
* @param inputs inputs to read data from
* @param erasedIndexes indexes of erased units in the inputs array
* @param outputs outputs to write into for data generated according to

View File

@ -36,7 +36,7 @@ public XORRawDecoder(int numDataUnits, int numParityUnits) {
protected void doDecode(ByteBuffer[] inputs, int[] erasedIndexes,
ByteBuffer[] outputs) {
ByteBuffer output = outputs[0];
resetOutputBuffer(output);
resetBuffer(output);
int erasedIdx = erasedIndexes[0];

View File

@ -34,7 +34,7 @@ public XORRawEncoder(int numDataUnits, int numParityUnits) {
protected void doEncode(ByteBuffer[] inputs, ByteBuffer[] outputs) {
ByteBuffer output = outputs[0];
resetOutputBuffer(output);
resetBuffer(output);
// Get the first buffer's data.
int iIdx, oIdx;

View File

@ -423,7 +423,7 @@ public void substitute(byte[][] p, int[] offsets,
byte[] pi = p[i];
for (iIdx = offsets[i], oIdx = offset;
iIdx < offsets[i] + len; iIdx++, oIdx++) {
int pij = pi[iIdx] & 0x000000FF;
int pij = pi != null ? pi[iIdx] & 0x000000FF : 0;
q[oIdx] = (byte) (q[oIdx] ^ mulTable[pij][y]);
}
y = mulTable[x][y];
@ -438,13 +438,15 @@ public void substitute(byte[][] p, int[] offsets,
* @param q store the return result
* @param x input field
*/
public void substitute(ByteBuffer[] p, ByteBuffer q, int x) {
public void substitute(ByteBuffer[] p, int len, ByteBuffer q, int x) {
int y = 1, iIdx, oIdx;
for (int i = 0; i < p.length; i++) {
ByteBuffer pi = p[i];
for (iIdx = pi.position(), oIdx = q.position();
iIdx < pi.limit(); iIdx++, oIdx++) {
int pij = pi.get(iIdx) & 0x000000FF;
int pos = pi != null ? pi.position() : 0;
int limit = pi != null ? pi.limit() : len;
for (oIdx = q.position(), iIdx = pos;
iIdx < limit; iIdx++, oIdx++) {
int pij = pi != null ? pi.get(iIdx) & 0x000000FF : 0;
q.put(oIdx, (byte) (q.get(oIdx) ^ mulTable[pij][y]));
}
y = mulTable[x][y];

View File

@ -35,7 +35,7 @@ public abstract class TestCoderBase {
private Configuration conf;
protected int numDataUnits;
protected int numParityUnits;
protected int baseChunkSize = 16 * 1024;
protected int baseChunkSize = 513;
private int chunkSize = baseChunkSize;
private byte[] zeroChunkBytes;
@ -186,8 +186,9 @@ protected ECChunk[] prepareInputChunksForDecoding(ECChunk[] dataChunks,
}
/**
* Erase chunks to test the recovering of them. Before erasure clone them
* first so could return them.
* Erase some data chunks to test the recovering of them. As they're erased,
* we don't need to read them and will not have the buffers at all, so just
* set them as null.
* @param dataChunks
* @param parityChunks
* @return clone of erased chunks
@ -198,50 +199,30 @@ protected ECChunk[] backupAndEraseChunks(ECChunk[] dataChunks,
erasedDataIndexes.length];
int idx = 0;
ECChunk chunk;
for (int i = 0; i < erasedParityIndexes.length; i++) {
chunk = parityChunks[erasedParityIndexes[i]];
toEraseChunks[idx ++] = cloneChunkWithData(chunk);
eraseDataFromChunk(chunk);
toEraseChunks[idx ++] = parityChunks[erasedParityIndexes[i]];
parityChunks[erasedParityIndexes[i]] = null;
}
for (int i = 0; i < erasedDataIndexes.length; i++) {
chunk = dataChunks[erasedDataIndexes[i]];
toEraseChunks[idx ++] = cloneChunkWithData(chunk);
eraseDataFromChunk(chunk);
toEraseChunks[idx ++] = dataChunks[erasedDataIndexes[i]];
dataChunks[erasedDataIndexes[i]] = null;
}
return toEraseChunks;
}
/**
* Erase data from the specified chunks, putting ZERO bytes to the buffers.
* Erase data from the specified chunks, just setting them as null.
* @param chunks
*/
protected void eraseDataFromChunks(ECChunk[] chunks) {
for (int i = 0; i < chunks.length; i++) {
eraseDataFromChunk(chunks[i]);
chunks[i] = null;
}
}
/**
* Erase data from the specified chunk, putting ZERO bytes to the buffer.
* @param chunk with a buffer ready to read at the current position
*/
protected void eraseDataFromChunk(ECChunk chunk) {
ByteBuffer chunkBuffer = chunk.getBuffer();
// Erase the data at the position, and restore the buffer ready for reading
// same many bytes but all ZERO.
int pos = chunkBuffer.position();
int len = chunkBuffer.remaining();
chunkBuffer.put(zeroChunkBytes, 0, len);
// Back to readable again after data erased
chunkBuffer.flip();
chunkBuffer.position(pos);
chunkBuffer.limit(pos + len);
}
/**
* Clone chunks along with copying the associated data. It respects how the
* chunk buffer is allocated, direct or non-direct. It avoids affecting the

View File

@ -232,7 +232,6 @@ protected TestBlock[] backupAndEraseBlocks(TestBlock[] dataBlocks,
TestBlock[] parityBlocks) {
TestBlock[] toEraseBlocks = new TestBlock[erasedDataIndexes.length +
erasedParityIndexes.length];
int idx = 0;
TestBlock block;

View File

@ -32,89 +32,86 @@ public void setup() {
}
@Test
public void testCodingNoDirectBuffer_10x4_erasing_d0_p0() {
public void testCoding_6x3_erasing_all_d() {
prepare(null, 6, 3, new int[]{0, 1, 2}, new int[0], true);
testCodingDoMixAndTwice();
}
@Test
public void testCoding_6x3_erasing_d0_d2() {
prepare(null, 6, 3, new int[] {0, 2}, new int[]{});
testCodingDoMixAndTwice();
}
@Test
public void testCoding_6x3_erasing_d0() {
prepare(null, 6, 3, new int[]{0}, new int[0]);
testCodingDoMixAndTwice();
}
@Test
public void testCoding_6x3_erasing_d2() {
prepare(null, 6, 3, new int[]{2}, new int[]{});
testCodingDoMixAndTwice();
}
@Test
public void testCoding_6x3_erasing_d0_p0() {
prepare(null, 6, 3, new int[]{0}, new int[]{0});
testCodingDoMixAndTwice();
}
@Test
public void testCoding_6x3_erasing_all_p() {
prepare(null, 6, 3, new int[0], new int[]{0, 1, 2});
testCodingDoMixAndTwice();
}
@Test
public void testCoding_6x3_erasing_p0() {
prepare(null, 6, 3, new int[0], new int[]{0});
testCodingDoMixAndTwice();
}
@Test
public void testCoding_6x3_erasing_p2() {
prepare(null, 6, 3, new int[0], new int[]{2});
testCodingDoMixAndTwice();
}
@Test
public void testCoding_6x3_erasure_p0_p2() {
prepare(null, 6, 3, new int[0], new int[]{0, 2});
testCodingDoMixAndTwice();
}
@Test
public void testCoding_6x3_erasing_d0_p0_p1() {
prepare(null, 6, 3, new int[]{0}, new int[]{0, 1});
testCodingDoMixAndTwice();
}
@Test
public void testCoding_6x3_erasing_d0_d2_p2() {
prepare(null, 6, 3, new int[]{0, 2}, new int[]{2});
testCodingDoMixAndTwice();
}
@Test
public void testCodingNegative_6x3_erasing_d2_d4() {
prepare(null, 6, 3, new int[]{2, 4}, new int[0]);
testCodingDoMixAndTwice();
}
@Test
public void testCodingNegative_6x3_erasing_too_many() {
prepare(null, 6, 3, new int[]{2, 4}, new int[]{0, 1});
testCodingWithErasingTooMany();
}
@Test
public void testCoding_10x4_erasing_d0_p0() {
prepare(null, 10, 4, new int[] {0}, new int[] {0});
/**
* Doing twice to test if the coders can be repeatedly reused. This matters
* as the underlying coding buffers are shared, which may have bugs.
*/
testCoding(false);
testCoding(false);
}
@Test
public void testCodingDirectBuffer_10x4_erasing_p1() {
prepare(null, 10, 4, new int[0], new int[] {1});
testCoding(true);
testCoding(true);
}
@Test
public void testCodingDirectBuffer_10x4_erasing_d2() {
prepare(null, 10, 4, new int[] {2}, new int[] {});
testCoding(true);
testCoding(true);
}
@Test
public void testCodingDirectBuffer_10x4_erasing_d0_p0() {
prepare(null, 10, 4, new int[] {0}, new int[] {0});
testCoding(true);
testCoding(true);
}
@Test
public void testCodingBothBuffers_10x4_erasing_d0_p0() {
prepare(null, 10, 4, new int[] {0}, new int[] {0});
/**
* Doing in mixed buffer usage model to test if the coders can be repeatedly
* reused with different buffer usage model. This matters as the underlying
* coding buffers are shared, which may have bugs.
*/
testCoding(true);
testCoding(false);
testCoding(true);
testCoding(false);
}
@Test
public void testCodingDirectBuffer_10x4_erasure_of_d2_d4_p0() {
prepare(null, 10, 4, new int[]{2, 4}, new int[]{0});
testCoding(true);
}
@Test
public void testCodingDirectBuffer_usingFixedData_10x4_erasure_of_d2_d4_p0() {
prepare(null, 10, 4, new int[] {2, 4}, new int[] {0}, true);
testCoding(true);
}
@Test
public void testCodingDirectBuffer_10x4_erasing_d0_d1_p0_p1() {
prepare(null, 10, 4, new int[] {0, 1}, new int[] {0, 1});
testCoding(true);
}
@Test
public void testCodingNoDirectBuffer_3x3_erasing_d0_p0() {
prepare(null, 3, 3, new int[] {0}, new int[] {0});
testCoding(false);
}
@Test
public void testCodingDirectBuffer_3x3_erasing_d0_p0() {
prepare(null, 3, 3, new int[] {0}, new int[] {0});
testCoding(true);
}
@Test
public void testCodingNegative_10x4_erasing_d2_d4() {
prepare(null, 10, 4, new int[]{2, 4}, new int[0]);
testCodingWithBadInput(true);
testCodingWithBadOutput(false);
testCodingWithBadInput(true);
testCodingWithBadOutput(false);
testCodingDoMixAndTwice();
}
}

View File

@ -20,6 +20,7 @@
import org.apache.hadoop.io.erasurecode.ECChunk;
import org.apache.hadoop.io.erasurecode.TestCoderBase;
import org.junit.Assert;
import org.junit.Test;
import java.lang.reflect.Constructor;
@ -32,6 +33,25 @@ public abstract class TestRawCoderBase extends TestCoderBase {
private RawErasureEncoder encoder;
private RawErasureDecoder decoder;
/**
* Doing twice to test if the coders can be repeatedly reused. This matters
* as the underlying coding buffers are shared, which may have bugs.
*/
protected void testCodingDoMixAndTwice() {
testCodingDoMixed();
testCodingDoMixed();
}
/**
* Doing in mixed buffer usage model to test if the coders can be repeatedly
* reused with different buffer usage model. This matters as the underlying
* coding buffers are shared, which may have bugs.
*/
protected void testCodingDoMixed() {
testCoding(true);
testCoding(false);
}
/**
* Generating source data, encoding, recovering and then verifying.
* RawErasureCoder mainly uses ECChunk to pass input and output data buffers,
@ -85,6 +105,23 @@ protected void testCodingWithBadOutput(boolean usingDirectBuffer) {
}
}
@Test
public void testCodingWithErasingTooMany() {
try {
testCoding(true);
Assert.fail("Decoding test erasing too many should fail");
} catch (Exception e) {
// Expected
}
try {
testCoding(false);
Assert.fail("Decoding test erasing too many should fail");
} catch (Exception e) {
// Expected
}
}
private void performTestCoding(int chunkSize,
boolean useBadInput, boolean useBadOutput) {
setChunkSize(chunkSize);
@ -110,6 +147,9 @@ private void performTestCoding(int chunkSize,
ECChunk[] inputChunks = prepareInputChunksForDecoding(
clonedDataChunks, parityChunks);
// Remove unnecessary chunks, allowing only least required chunks to be read.
ensureOnlyLeastRequiredChunks(inputChunks);
ECChunk[] recoveredChunks = prepareOutputChunksForDecoding();
if (useBadOutput) {
corruptSomeChunk(recoveredChunks);
@ -131,6 +171,20 @@ private void prepareCoders() {
}
}
private void ensureOnlyLeastRequiredChunks(ECChunk[] inputChunks) {
int leastRequiredNum = numDataUnits;
int erasedNum = erasedDataIndexes.length + erasedParityIndexes.length;
int goodNum = inputChunks.length - erasedNum;
int redundantNum = goodNum - leastRequiredNum;
for (int i = 0; i < inputChunks.length && redundantNum > 0; i++) {
if (inputChunks[i] != null) {
inputChunks[i] = null; // Setting it null, not needing it actually
redundantNum--;
}
}
}
/**
* Create the raw erasure encoder to test
* @return

View File

@ -29,58 +29,35 @@ public class TestXORRawCoder extends TestRawCoderBase {
public void setup() {
this.encoderClass = XORRawEncoder.class;
this.decoderClass = XORRawDecoder.class;
this.numDataUnits = 10;
this.numParityUnits = 1;
}
@Test
public void testCodingNoDirectBuffer_erasing_d0() {
public void testCoding_10x1_erasing_d0() {
prepare(null, 10, 1, new int[] {0}, new int[0]);
/**
* Doing twice to test if the coders can be repeatedly reused. This matters
* as the underlying coding buffers are shared, which may have bugs.
*/
testCoding(false);
testCoding(false);
testCodingDoMixAndTwice();
}
@Test
public void testCodingDirectBuffer_erasing_p0() {
public void testCoding_10x1_erasing_p0() {
prepare(null, 10, 1, new int[0], new int[] {0});
testCoding(true);
testCoding(true);
testCodingDoMixAndTwice();
}
@Test
public void testCodingDirectBuffer_erasing_d0() {
prepare(null, 10, 1, new int[] {0}, new int[0]);
testCoding(true);
testCoding(true);
}
@Test
public void testCodingBothBuffers_erasing_d5() {
public void testCoding_10x1_erasing_d5() {
prepare(null, 10, 1, new int[]{5}, new int[0]);
/**
* Doing in mixed buffer usage model to test if the coders can be repeatedly
* reused with different buffer usage model. This matters as the underlying
* coding buffers are shared, which may have bugs.
*/
testCoding(true);
testCoding(false);
testCoding(true);
testCoding(false);
testCodingDoMixAndTwice();
}
@Test
public void testCodingNegative_erasing_d5() {
prepare(null, 10, 1, new int[]{5}, new int[0]);
public void testCodingNegative_10x1_erasing_too_many() {
prepare(null, 10, 1, new int[]{2}, new int[]{0});
testCodingWithErasingTooMany();
}
@Test
public void testCodingNegative_10x1_erasing_d5() {
prepare(null, 10, 1, new int[]{5}, new int[0]);
testCodingWithBadInput(true);
testCodingWithBadOutput(false);
testCodingWithBadInput(true);