diff --git a/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-site/src/site/markdown/UsingGpus.md b/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-site/src/site/markdown/UsingGpus.md
new file mode 100644
index 0000000000..f6000e7c35
--- /dev/null
+++ b/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-site/src/site/markdown/UsingGpus.md
@@ -0,0 +1,230 @@
+
+
+
+# Using GPU On YARN
+# Prerequisites
+
+- As of now, only Nvidia GPUs are supported by YARN
+- YARN node managers have to be pre-installed with Nvidia drivers.
+- When Docker is used as container runtime context, nvidia-docker 1.0 needs to be installed (Current supported version in YARN for nvidia-docker).
+
+# Configs
+
+## GPU scheduling
+
+In `resource-types.xml`
+
+Add following properties
+
+```
+
+
+ yarn.resource-types
+ yarn.io/gpu
+
+
+```
+
+In `yarn-site.xml`
+
+`DominantResourceCalculator` MUST be configured to enable GPU scheduling/isolation.
+
+For `Capacity Scheduler`, use following property to configure `DominantResourceCalculator` (In `capacity-scheduler.xml`):
+
+| Property | Default value |
+| --- | --- |
+| yarn.scheduler.capacity.resource-calculator | org.apache.hadoop.yarn.util.resource.DominantResourceCalculator |
+
+
+## GPU Isolation
+
+### In `yarn-site.xml`
+
+```
+
+ yarn.nodemanager.resource-plugins
+ yarn.io/gpu
+
+```
+
+This is to enable GPU isolation module on NodeManager side.
+
+By default, YARN will automatically detect and config GPUs when above config is set. Following configs need to be set in `yarn-site.xml` only if admin has specialized requirements.
+
+**1) Allowed GPU Devices**
+
+| Property | Default value |
+| --- | --- |
+| yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices | auto |
+
+ Specify GPU devices which can be managed by YARN NodeManager (split by comma).
+ Number of GPU devices will be reported to RM to make scheduling decisions.
+ Set to auto (default) let YARN automatically discover GPU resource from
+ system.
+
+ Manually specify GPU devices if auto detect GPU device failed or admin
+ only want subset of GPU devices managed by YARN. GPU device is identified
+ by their minor device number and index. A common approach to get minor
+ device number of GPUs is using `nvidia-smi -q` and search `Minor Number`
+ output.
+
+ When minor numbers are specified manually, admin needs to include indice of GPUs
+ as well, format is `index:minor_number[,index:minor_number...]`. An example
+ of manual specification is `0:0,1:1,2:2,3:4"`to allow YARN NodeManager to
+ manage GPU devices with indices `0/1/2/3` and minor number `0/1/2/4`.
+ numbers .
+
+**2) Executable to discover GPUs**
+
+| Property | value |
+| --- | --- |
+| yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables | /absolute/path/to/nvidia-smi |
+
+When `yarn.nodemanager.resource.gpu.allowed-gpu-devices=auto` specified,
+YARN NodeManager needs to run GPU discovery binary (now only support
+`nvidia-smi`) to get GPU-related information.
+When value is empty (default), YARN NodeManager will try to locate
+discovery executable itself.
+An example of the config value is: `/usr/local/bin/nvidia-smi`
+
+**3) Docker Plugin Related Configs**
+
+Following configs can be customized when user needs to run GPU applications inside Docker container. They're not required if admin follows default installation/configuration of `nvidia-docker`.
+
+| Property | Default value |
+| --- | --- |
+| yarn.nodemanager.resource-plugins.gpu.docker-plugin | nvidia-docker-v1 |
+
+Specify docker command plugin for GPU. By default uses Nvidia docker V1.0.
+
+| Property | Default value |
+| --- | --- |
+| yarn.nodemanager.resource-plugins.gpu.docker-plugin.nvidia-docker-v1.endpoint | http://localhost:3476/v1.0/docker/cli |
+
+Specify end point of `nvidia-docker-plugin`. Please find documentation: https://github.com/NVIDIA/nvidia-docker/wiki For more details.
+
+**4) CGroups mount**
+
+GPU isolation uses CGroup [devices controller](https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt) to do per-GPU device isolation. Following configs should be added to `yarn-site.xml` to automatically mount CGroup sub devices, otherwise admin has to manually create devices subfolder in order to use this feature.
+
+| Property | Default value |
+| --- | --- |
+| yarn.nodemanager.linux-container-executor.cgroups.mount | true |
+
+
+### In `container-executor.cfg`
+
+In general, following config needs to be added to `container-executor.cfg`
+
+```
+[gpu]
+module.enabled=true
+```
+
+When user needs to run GPU applications under non-Docker environment:
+
+```
+[cgroups]
+# This should be same as yarn.nodemanager.linux-container-executor.cgroups.mount-path inside yarn-site.xml
+root=/sys/fs/cgroup
+# This should be same as yarn.nodemanager.linux-container-executor.cgroups.hierarchy inside yarn-site.xml
+yarn-hierarchy=yarn
+```
+
+When user needs to run GPU applications under Docker environment:
+
+**1) Add GPU related devices to docker section:**
+
+Values separated by comma, you can get this by running `ls /dev/nvidia*`
+
+```
+[docker]
+docker.allowed.devices=/dev/nvidiactl,/dev/nvidia-uvm,/dev/nvidia-uvm-tools,/dev/nvidia1,/dev/nvidia0
+```
+
+**2) Add `nvidia-docker` to volume-driver whitelist.**
+
+```
+[docker]
+...
+docker.allowed.volume-drivers
+```
+
+**3) Add `nvidia_driver_` to readonly mounts whitelist.**
+
+```
+[docker]
+...
+docker.allowed.ro-mounts=nvidia_driver_375.66
+```
+
+# Use it
+
+## Distributed-shell + GPU
+
+Distributed shell currently support specify additional resource types other than memory and vcores.
+
+### Distributed-shell + GPU without Docker
+
+Run distributed shell without using docker container (Asks 2 tasks, each task has 3GB memory, 1 vcore, 2 GPU device resource):
+
+```
+yarn jar \
+ -jar \
+ -shell_command /usr/local/nvidia/bin/nvidia-smi \
+ -container_resources memory-mb=3072,vcores=1,yarn.io/gpu=2 \
+ -num_containers 2
+```
+
+You should be able to see output like
+
+```
+Tue Dec 5 22:21:47 2017
++-----------------------------------------------------------------------------+
+| NVIDIA-SMI 375.66 Driver Version: 375.66 |
+|-------------------------------+----------------------+----------------------+
+| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
+| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
+|===============================+======================+======================|
+| 0 Tesla P100-PCIE... Off | 0000:04:00.0 Off | 0 |
+| N/A 30C P0 24W / 250W | 0MiB / 12193MiB | 0% Default |
++-------------------------------+----------------------+----------------------+
+| 1 Tesla P100-PCIE... Off | 0000:82:00.0 Off | 0 |
+| N/A 34C P0 25W / 250W | 0MiB / 12193MiB | 0% Default |
++-------------------------------+----------------------+----------------------+
+
++-----------------------------------------------------------------------------+
+| Processes: GPU Memory |
+| GPU PID Type Process name Usage |
+|=============================================================================|
+| No running processes found |
++-----------------------------------------------------------------------------+
+```
+
+For launched container task.
+
+### Distributed-shell + GPU with Docker
+
+You can also run distributed shell with Docker container. `YARN_CONTAINER_RUNTIME_TYPE`/`YARN_CONTAINER_RUNTIME_DOCKER_IMAGE` must be specified to use docker container.
+
+```
+yarn jar \
+ -jar \
+ -shell_env YARN_CONTAINER_RUNTIME_TYPE=docker \
+ -shell_env YARN_CONTAINER_RUNTIME_DOCKER_IMAGE= \
+ -shell_command nvidia-smi \
+ -container_resources memory-mb=3072,vcores=1,yarn.io/gpu=2 \
+ -num_containers 2
+```
\ No newline at end of file