To compile Hadoop Mapreduce next following, do the following: Step 1) Install dependencies for yarn See http://svn.apache.org/repos/asf/hadoop/common/trunk/hadoop-mapreduce/hadoop-yarn/README Make sure protbuf library is in your library path or set: export LD_LIBRARY_PATH=/usr/local/lib Step 2) Checkout svn checkout http://svn.apache.org/repos/asf/hadoop/common/trunk Step 3) Build common Go to common directory - choose your regular common build command Example: mvn clean install package -Pbintar -DskipTests Step 4) Build HDFS Go to hdfs directory ant veryclean mvn-install -Dresolvers=internal Step 5) Build yarn and mapreduce Go to mapreduce directory export MAVEN_OPTS=-Xmx512m mvn clean install assembly:assembly -DskipTests Copy in build.properties if appropriate - make sure eclipse.home not set ant veryclean tar -Dresolvers=internal You will see a tarball in ls target/hadoop-mapreduce-0.24.0-SNAPSHOT-all.tar.gz Step 6) Untar the tarball in a clean and different directory. say YARN_HOME. Make sure you aren't picking up avro-1.3.2.jar, remove: $HADOOP_COMMON_HOME/share/hadoop/common/lib/avro-1.3.2.jar $YARN_HOME/lib/avro-1.3.2.jar Step 7) Install hdfs/common and start hdfs To run Hadoop Mapreduce next applications: Step 8) export the following variables to where you have things installed: You probably want to export these in hadoop-env.sh and yarn-env.sh also. export HADOOP_MAPRED_HOME=<mapred loc> export HADOOP_COMMON_HOME=<common loc> export HADOOP_HDFS_HOME=<hdfs loc> export YARN_HOME=directory where you untarred yarn export HADOOP_CONF_DIR=<conf loc> export YARN_CONF_DIR=$HADOOP_CONF_DIR Step 9) Setup config: for running mapreduce applications, which now are in user land, you need to setup nodemanager with the following configuration in your yarn-site.xml before you start the nodemanager. <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce.shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> Step 10) Modify mapred-site.xml to use yarn framework <property> <name> mapreduce.framework.name</name> <value>yarn</value> </property> Step 11) Create the following symlinks in $HADOOP_COMMON_HOME/share/hadoop/common/lib ln -s $YARN_HOME/modules/hadoop-mapreduce-client-app-0.24.0-SNAPSHOT.jar . ln -s $YARN_HOME/modules/hadoop-yarn-api-0.24.0-SNAPSHOT.jar . ln -s $YARN_HOME/modules/hadoop-mapreduce-client-common-0.24.0-SNAPSHOT.jar . ln -s $YARN_HOME/modules/hadoop-yarn-common-0.24.0-SNAPSHOT.jar . ln -s $YARN_HOME/modules/hadoop-mapreduce-client-core-0.24.0-SNAPSHOT.jar . ln -s $YARN_HOME/modules/hadoop-yarn-server-common-0.24.0-SNAPSHOT.jar . ln -s $YARN_HOME/modules/hadoop-mapreduce-client-jobclient-0.24.0-SNAPSHOT.jar . Step 12) cd $YARN_HOME Step 13) bin/yarn-daemon.sh start resourcemanager Step 14) bin/yarn-daemon.sh start nodemanager Step 15) bin/yarn-daemon.sh start historyserver Step 16) You are all set, an example on how to run a mapreduce job is: cd $HADOOP_MAPRED_HOME ant examples -Dresolvers=internal $HADOOP_COMMON_HOME/bin/hadoop jar $HADOOP_MAPRED_HOME/build/hadoop-mapreduce-examples-0.24.0-SNAPSHOT.jar randomwriter -Dmapreduce.job.user.name=$USER -Dmapreduce.clientfactory.class.name=org.apache.hadoop.mapred.YarnClientFactory -Dmapreduce.randomwriter.bytespermap=10000 -Ddfs.blocksize=536870912 -Ddfs.block.size=536870912 -libjars $YARN_HOME/modules/hadoop-mapreduce-client-jobclient-0.24.0-SNAPSHOT.jar output The output on the command line should be almost similar to what you see in the JT/TT setup (Hadoop 0.20/0.21)