2011-08-25 19:13:50 +00:00

99 lines
3.6 KiB
Plaintext

To compile Hadoop Mapreduce next following, do the following:
Step 1) Install dependencies for yarn
See http://svn.apache.org/repos/asf/hadoop/common/trunk/hadoop-mapreduce/hadoop-yarn/README
Make sure protbuf library is in your library path or set: export LD_LIBRARY_PATH=/usr/local/lib
Step 2) Checkout
svn checkout http://svn.apache.org/repos/asf/hadoop/common/trunk
Step 3) Build common
Go to common directory - choose your regular common build command
Example: mvn clean install package -Pbintar -DskipTests
Step 4) Build HDFS
Go to hdfs directory
ant veryclean mvn-install -Dresolvers=internal
Step 5) Build yarn and mapreduce
Go to mapreduce directory
export MAVEN_OPTS=-Xmx512m
mvn clean install assembly:assembly -DskipTests
Copy in build.properties if appropriate - make sure eclipse.home not set
ant veryclean tar -Dresolvers=internal
You will see a tarball in
ls target/hadoop-mapreduce-0.23.0-SNAPSHOT-all.tar.gz
Step 6) Untar the tarball in a clean and different directory.
say YARN_HOME.
Make sure you aren't picking up avro-1.3.2.jar, remove:
$HADOOP_COMMON_HOME/share/hadoop/common/lib/avro-1.3.2.jar
$YARN_HOME/lib/avro-1.3.2.jar
Step 7)
Install hdfs/common and start hdfs
To run Hadoop Mapreduce next applications:
Step 8) export the following variables to where you have things installed:
You probably want to export these in hadoop-env.sh and yarn-env.sh also.
export HADOOP_MAPRED_HOME=<mapred loc>
export HADOOP_COMMON_HOME=<common loc>
export HADOOP_HDFS_HOME=<hdfs loc>
export YARN_HOME=directory where you untarred yarn
export HADOOP_CONF_DIR=<conf loc>
export YARN_CONF_DIR=$HADOOP_CONF_DIR
Step 9) Setup config: for running mapreduce applications, which now are in user land, you need to setup nodemanager with the following configuration in your yarn-site.xml before you start the nodemanager.
<property>
<name>nodemanager.auxiluary.services</name>
<value>mapreduce.shuffle</value>
</property>
<property>
<name>nodemanager.aux.service.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
Step 10) Modify mapred-site.xml to use yarn framework
<property>
<name> mapreduce.framework.name</name>
<value>yarn</value>
</property>
Step 11) Create the following symlinks in $HADOOP_COMMON_HOME/share/hadoop/common/lib
ln -s $YARN_HOME/modules/hadoop-mapreduce-client-app-0.23.0-SNAPSHOT.jar .
ln -s $YARN_HOME/modules/hadoop-yarn-api-0.23.0-SNAPSHOT.jar .
ln -s $YARN_HOME/modules/hadoop-mapreduce-client-common-0.23.0-SNAPSHOT.jar .
ln -s $YARN_HOME/modules/hadoop-yarn-common-0.23.0-SNAPSHOT.jar .
ln -s $YARN_HOME/modules/hadoop-mapreduce-client-core-0.23.0-SNAPSHOT.jar .
ln -s $YARN_HOME/modules/hadoop-yarn-server-common-0.23.0-SNAPSHOT.jar .
ln -s $YARN_HOME/modules/hadoop-mapreduce-client-jobclient-0.23.0-SNAPSHOT.jar .
Step 12) cd $YARN_HOME
Step 13) bin/yarn-daemon.sh start resourcemanager
Step 14) bin/yarn-daemon.sh start nodemanager
Step 15) bin/yarn-daemon.sh start historyserver
Step 16) You are all set, an example on how to run a mapreduce job is:
cd $HADOOP_MAPRED_HOME
ant examples -Dresolvers=internal
$HADOOP_COMMON_HOME/bin/hadoop jar $HADOOP_MAPRED_HOME/build/hadoop-mapreduce-examples-0.23.0-SNAPSHOT.jar randomwriter -Dmapreduce.job.user.name=$USER -Dmapreduce.clientfactory.class.name=org.apache.hadoop.mapred.YarnClientFactory -Dmapreduce.randomwriter.bytespermap=0.23.000 -Ddfs.blocksize=536870912 -Ddfs.block.size=536870912 -libjars $YARN_HOME/modules/hadoop-mapreduce-client-jobclient-0.23.0-SNAPSHOT.jar output
The output on the command line should be almost similar to what you see in the JT/TT setup (Hadoop 0.20/0.21)