parent
da39f0dc40
commit
6085eaec1c
373
yarn/job_start.md
Normal file
373
yarn/job_start.md
Normal file
@ -0,0 +1,373 @@
|
||||
# 作业启动
|
||||
|
||||
作业提交的客户端比较核心的类是Job.java,看作业启动的源码需要从这个类开始看。
|
||||
|
||||
## Job.java
|
||||
|
||||
作业启动的入口函数为waitForCompletion函数。当前函数的核心函数为submit(),主要如下:
|
||||
|
||||
```java
|
||||
public void submit()
|
||||
throws IOException, InterruptedException, ClassNotFoundException {
|
||||
ensureState(JobState.DEFINE);
|
||||
setUseNewAPI();
|
||||
connect();
|
||||
final JobSubmitter submitter =
|
||||
getJobSubmitter(cluster.getFileSystem(), cluster.getClient());
|
||||
status = ugi.doAs(new PrivilegedExceptionAction<JobStatus>() {
|
||||
public JobStatus run() throws IOException, InterruptedException,
|
||||
ClassNotFoundException {
|
||||
return submitter.submitJobInternal(Job.this, cluster);
|
||||
}
|
||||
});
|
||||
state = JobState.RUNNING;
|
||||
LOG.info("The url to track the job: " + getTrackingURL());
|
||||
}
|
||||
```
|
||||
|
||||
其中,connect主要为连接ResourceManager。核心提交类为submitJobInternal,在submitJobInternal中主要包含:
|
||||
|
||||
- 检查是否开启分布式缓存,核心函数为:`addMRFrameworkToDistributedCache(conf);`
|
||||
- 从yarn上面获取Yarn ApplicationId。
|
||||
- 将需要上传的文件拷贝到submitJobDir下面,将上传的结果添加到指定的配置中。主要实现在函数`copyAndConfigureFiles(job, submitJobDir);`里面,主要上传当前作业需要的jar包等信息到staging目录。当上传Jar包比较频繁的时候可以考虑开启分布式缓存。
|
||||
- 初始化核心配置,主要实现在函数:`writeConf(conf, submitJobFile);`里面。
|
||||
- 最后才是真正提交作业的部分:`status = submitClient.submitJob(jobId, submitJobDir.toString(), job.getCredentials());`通过submitClient.submitJob之后是远程调用到ResourceManager的类:YARNRunner.java,开始作业提交。
|
||||
|
||||
|
||||
|
||||
## YARNRunner.java
|
||||
|
||||
在当前类中,处理逻辑主要包含下面几步:
|
||||
|
||||
- 创建上下问信息:ApplicationSubmissionContext,当前这一步当中主要是构造AM相关参数,比如AM的启动命令等。在AM的启动命令中会设置AM的启动主函数MRAppMaster,在资源调度到当前作业时,会先启动AM的主函数MRAppMaster
|
||||
- 提交作业。最后会调用到`rmClient.submitApplication(request);`发送启动作业的请求,在发送请求之后会一直等到作业启动完成。启动成功之后会返回appilicationId
|
||||
|
||||
## 资源调度
|
||||
|
||||
Yarn资源调度过程待完善,后面会单独章节学习。
|
||||
|
||||
## MRAppMaster.java
|
||||
|
||||
当前类是启动AM的入口函数,所以要从main函数开始读代码。main函数里面主要做了下面几件事:
|
||||
|
||||
- 初始化MRAppMaster实例。
|
||||
- 加载job.xml信息。
|
||||
- 初始化web信息。主要包含: MR history server、MR Server。
|
||||
- 启动APPMaster。
|
||||
|
||||
|
||||
|
||||
### initAndStartAppMaster:启动AppMaster
|
||||
|
||||
MRAppMaster在yarn内部是一个服务,最终启动的时候会调用到serviceStart函数里面,所以我们主要看这个函数里面做了什么。
|
||||
|
||||
|
||||
|
||||
#### 1、创建并且初始化Job
|
||||
|
||||
创建Job对象并且将其初始化掉。但是不会启动当前作业。
|
||||
|
||||
- 初始化JobImpl对象。在JobImpl初始化的时候做了下面几件事:
|
||||
|
||||
- 初始化线程池。
|
||||
|
||||
- 初始化作业状态机的核心代码如下:
|
||||
|
||||
```java
|
||||
protected static final
|
||||
StateMachineFactory<JobImpl, JobStateInternal, JobEventType, JobEvent>
|
||||
stateMachineFactory
|
||||
= new StateMachineFactory<JobImpl, JobStateInternal, JobEventType, JobEvent>
|
||||
(JobStateInternal.NEW)
|
||||
// Transitions from NEW state
|
||||
.addTransition(JobStateInternal.NEW, JobStateInternal.NEW,
|
||||
JobEventType.JOB_DIAGNOSTIC_UPDATE,
|
||||
DIAGNOSTIC_UPDATE_TRANSITION)
|
||||
.addTransition(JobStateInternal.NEW, JobStateInternal.NEW,
|
||||
JobEventType.JOB_COUNTER_UPDATE, COUNTER_UPDATE_TRANSITION)
|
||||
// ....省略...
|
||||
.addTransition(JobStateInternal.REBOOT, JobStateInternal.REBOOT,
|
||||
JobEventType.JOB_COUNTER_UPDATE, COUNTER_UPDATE_TRANSITION)
|
||||
// create the topology tables
|
||||
.installTopology();
|
||||
|
||||
- 初始化其他配置。
|
||||
|
||||
- 在中央处理器里面注册JobFinishEvent类型事件以及事件处理的handler。
|
||||
|
||||
```java
|
||||
protected Job createJob(Configuration conf, JobStateInternal forcedState,
|
||||
String diagnostic) {
|
||||
// create single job
|
||||
Job newJob =
|
||||
new JobImpl(jobId, appAttemptID, conf, dispatcher.getEventHandler(),
|
||||
taskAttemptListener, jobTokenSecretManager, jobCredentials, clock,
|
||||
completedTasksFromPreviousRun, metrics,
|
||||
committer, newApiCommitter,
|
||||
currentUser.getUserName(), appSubmitTime, amInfos, context,
|
||||
forcedState, diagnostic);
|
||||
((RunningAppContext) context).jobs.put(newJob.getID(), newJob);
|
||||
dispatcher.register(JobFinishEvent.Type.class,
|
||||
createJobFinishEventHandler());
|
||||
return newJob;
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
#### 2、发送inited事件
|
||||
|
||||
发送inited事件的对象主要是下面两个:
|
||||
|
||||
- 通过dispatcher给历史AM发送。
|
||||
- 当前AM。代码如下:
|
||||
|
||||
```java
|
||||
// Send out an MR AM inited event for this AM.
|
||||
dispatcher.getEventHandler().handle(
|
||||
new JobHistoryEvent(job.getID(), new AMStartedEvent(amInfo
|
||||
.getAppAttemptId(), amInfo.getStartTime(), amInfo.getContainerId(),
|
||||
amInfo.getNodeManagerHost(), amInfo.getNodeManagerPort(), amInfo
|
||||
.getNodeManagerHttpPort(), this.forcedState == null ? null
|
||||
: this.forcedState.toString(), appSubmitTime)));
|
||||
```
|
||||
|
||||
|
||||
|
||||
#### 3、创建job init事件,并且处理
|
||||
|
||||
创建init事件,核心代码如下:
|
||||
|
||||
```java
|
||||
JobEvent initJobEvent = new JobEvent(job.getID(), JobEventType.JOB_INIT);
|
||||
jobEventDispatcher.handle(initJobEvent);
|
||||
```
|
||||
|
||||
事件处理的核心类为InitTransition,核心代码如下:
|
||||
|
||||
```java
|
||||
public JobStateInternal transition(JobImpl job, JobEvent event) {
|
||||
job.metrics.submittedJob(job);
|
||||
job.metrics.preparingJob(job);
|
||||
// 初始化上下文。
|
||||
if (job.newApiCommitter) {
|
||||
job.jobContext = new JobContextImpl(job.conf,
|
||||
job.oldJobId);
|
||||
} else {
|
||||
job.jobContext = new org.apache.hadoop.mapred.JobContextImpl(
|
||||
job.conf, job.oldJobId);
|
||||
}
|
||||
|
||||
try {
|
||||
// 初始化token等信息。
|
||||
setup(job);
|
||||
job.fs = job.getFileSystem(job.conf);
|
||||
|
||||
//log to job history
|
||||
JobSubmittedEvent jse = new JobSubmittedEvent(job.oldJobId,
|
||||
job.conf.get(MRJobConfig.JOB_NAME, "test"),
|
||||
job.conf.get(MRJobConfig.USER_NAME, "mapred"),
|
||||
job.appSubmitTime,
|
||||
job.remoteJobConfFile.toString(),
|
||||
job.jobACLs, job.queueName,
|
||||
job.conf.get(MRJobConfig.WORKFLOW_ID, ""),
|
||||
job.conf.get(MRJobConfig.WORKFLOW_NAME, ""),
|
||||
job.conf.get(MRJobConfig.WORKFLOW_NODE_NAME, ""),
|
||||
getWorkflowAdjacencies(job.conf),
|
||||
job.conf.get(MRJobConfig.WORKFLOW_TAGS, ""), job.conf);
|
||||
job.eventHandler.handle(new JobHistoryEvent(job.jobId, jse));
|
||||
//TODO JH Verify jobACLs, UserName via UGI?
|
||||
// 初始化并行度等信息。
|
||||
TaskSplitMetaInfo[] taskSplitMetaInfo = createSplits(job, job.jobId);
|
||||
job.numMapTasks = taskSplitMetaInfo.length;
|
||||
job.numReduceTasks = job.conf.getInt(MRJobConfig.NUM_REDUCES, 0);
|
||||
|
||||
if (job.numMapTasks == 0 && job.numReduceTasks == 0) {
|
||||
job.addDiagnostic("No of maps and reduces are 0 " + job.jobId);
|
||||
} else if (job.numMapTasks == 0) {
|
||||
job.reduceWeight = 0.9f;
|
||||
} else if (job.numReduceTasks == 0) {
|
||||
job.mapWeight = 0.9f;
|
||||
} else {
|
||||
job.mapWeight = job.reduceWeight = 0.45f;
|
||||
}
|
||||
|
||||
checkTaskLimits();
|
||||
|
||||
// 加载其他参数,具体代码省略。。
|
||||
|
||||
cleanupSharedCacheUploadPolicies(job.conf);
|
||||
|
||||
// create the Tasks but don't start them yet,, 创建map task
|
||||
createMapTasks(job, inputLength, taskSplitMetaInfo);
|
||||
// 创建reduce tasks
|
||||
createReduceTasks(job);
|
||||
|
||||
job.metrics.endPreparingJob(job);
|
||||
return JobStateInternal.INITED;
|
||||
} catch (Exception e) {
|
||||
LOG.warn("Job init failed", e);
|
||||
job.metrics.endPreparingJob(job);
|
||||
job.addDiagnostic("Job init failed : "
|
||||
+ StringUtils.stringifyException(e));
|
||||
// Leave job in the NEW state. The MR AM will detect that the state is
|
||||
// not INITED and send a JOB_INIT_FAILED event.
|
||||
return JobStateInternal.NEW;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
#### 4、检查初始化结果并且启动作业
|
||||
|
||||
当init成功时,handler返回的结果是JobStateInternal.INITED;如果是失败了则返回的结果是JobStateInternal.NEW。
|
||||
|
||||
对于初始化失败的作业会触发JobEventType.JOB_INIT_FAILED事件。
|
||||
|
||||
对于初始化成功的作业会调用函数startJobs,继续启动作业。触发
|
||||
|
||||
```java
|
||||
protected void startJobs() {
|
||||
/** create a job-start event to get this ball rolling */
|
||||
JobEvent startJobEvent = new JobStartEvent(job.getID(),
|
||||
recoveredJobStartTime);
|
||||
/** send the job-start event. this triggers the job execution. */
|
||||
dispatcher.getEventHandler().handle(startJobEvent);
|
||||
}
|
||||
```
|
||||
|
||||
核心处理逻辑如下,主要是触发了几个事件:
|
||||
|
||||
- JobHistoryEvent:事件处理的handler为JobHistoryEventHandler。
|
||||
- JobInfoChangeEvent:
|
||||
- CommitterJobSetupEvent:作业启动的事件,核心处理逻辑在EventProcessor中的函数handleJobSetup中。
|
||||
|
||||
```java
|
||||
public void transition(JobImpl job, JobEvent event) {
|
||||
JobStartEvent jse = (JobStartEvent) event;
|
||||
if (jse.getRecoveredJobStartTime() != -1L) {
|
||||
job.startTime = jse.getRecoveredJobStartTime();
|
||||
} else {
|
||||
job.startTime = job.clock.getTime();
|
||||
}
|
||||
JobInitedEvent jie =
|
||||
new JobInitedEvent(job.oldJobId,
|
||||
job.startTime,
|
||||
job.numMapTasks, job.numReduceTasks,
|
||||
job.getState().toString(),
|
||||
job.isUber());
|
||||
job.eventHandler.handle(new JobHistoryEvent(job.jobId, jie));
|
||||
JobInfoChangeEvent jice = new JobInfoChangeEvent(job.oldJobId,
|
||||
job.appSubmitTime, job.startTime);
|
||||
job.eventHandler.handle(new JobHistoryEvent(job.jobId, jice));
|
||||
job.metrics.runningJob(job);
|
||||
|
||||
job.eventHandler.handle(new CommitterJobSetupEvent(
|
||||
job.jobId, job.jobContext));
|
||||
}
|
||||
```
|
||||
|
||||
handleJobSetup的核心处理逻辑:
|
||||
|
||||
- 创建attempt路径。
|
||||
- 触发JobSetupCompletedEvent事件。从事件实现来看会触发JobImpl里面的JOB_SETUP_COMPLETED事件类型,由SetupCompletedTransition来处理当前事件。在当前函数里面会触发JOB_COMPLETED事件。最终会走到JobImpl的checkReadyForCommit函数里面。
|
||||
|
||||
```java
|
||||
protected void handleJobSetup(CommitterJobSetupEvent event) {
|
||||
try {
|
||||
// 主要是创建attempt路径
|
||||
committer.setupJob(event.getJobContext());
|
||||
context.getEventHandler().handle(
|
||||
new JobSetupCompletedEvent(event.getJobID()));
|
||||
} catch (Exception e) {
|
||||
LOG.warn("Job setup failed", e);
|
||||
context.getEventHandler().handle(new JobSetupFailedEvent(
|
||||
event.getJobID(), StringUtils.stringifyException(e)));
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
SetupCompletedTransition的处理逻辑如下,可以看到会定时启动MapTask和ReduceTask。
|
||||
|
||||
```java
|
||||
public void transition(JobImpl job, JobEvent event) {
|
||||
job.setupProgress = 1.0f;
|
||||
job.scheduleTasks(job.mapTasks, job.numReduceTasks == 0);
|
||||
job.scheduleTasks(job.reduceTasks, true);
|
||||
|
||||
// If we have no tasks, just transition to job completed
|
||||
if (job.numReduceTasks == 0 && job.numMapTasks == 0) {
|
||||
job.eventHandler.handle(new JobEvent(job.jobId,
|
||||
JobEventType.JOB_COMPLETED));
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
checkReadyForCommit函数的实现如下,可以看到在触发了CommitterJobCommitEvent事件,在CommitterJobCommitEvent里面会触发JOB_COMMIT事件。主要处理逻辑在handleJobCommit里面。
|
||||
|
||||
```java
|
||||
protected JobStateInternal checkReadyForCommit() {
|
||||
JobStateInternal currentState = getInternalState();
|
||||
if (completedTaskCount == tasks.size()
|
||||
&& currentState == JobStateInternal.RUNNING) {
|
||||
eventHandler.handle(new CommitterJobCommitEvent(jobId, getJobContext()));
|
||||
return JobStateInternal.COMMITTING;
|
||||
}
|
||||
// return the current state as job not ready to commit yet
|
||||
return getInternalState();
|
||||
}
|
||||
```
|
||||
|
||||
handleJobCommit处理逻辑如下,
|
||||
|
||||
```java
|
||||
protected void handleJobCommit(CommitterJobCommitEvent event) {
|
||||
boolean commitJobIsRepeatable = false;
|
||||
try {
|
||||
// 检查作业是否重复。
|
||||
commitJobIsRepeatable = committer.isCommitJobRepeatable(
|
||||
event.getJobContext());
|
||||
} catch (IOException e) {
|
||||
LOG.warn("Exception in committer.isCommitJobRepeatable():", e);
|
||||
}
|
||||
|
||||
try {
|
||||
// 创建文件:/tmp/hadoop-yarn/staging//user/.staging/{jobid}/COMMIT_STARTED
|
||||
touchz(startCommitFile, commitJobIsRepeatable);
|
||||
jobCommitStarted();
|
||||
// 检查和RM的心跳。
|
||||
waitForValidCommitWindow();
|
||||
// 提交作业,核心处理函数在commitJobInternal里面
|
||||
committer.commitJob(event.getJobContext());
|
||||
// 创建文件:/tmp/hadoop-yarn/staging//user/.staging/{jobid}/COMMIT_SUCCESS
|
||||
touchz(endCommitSuccessFile, commitJobIsRepeatable);
|
||||
context.getEventHandler().handle(
|
||||
new JobCommitCompletedEvent(event.getJobID()));
|
||||
} catch (Exception e) {
|
||||
LOG.error("Could not commit job", e);
|
||||
try {
|
||||
// 失败之后创建:/tmp/hadoop-yarn/staging//user/.staging/{jobid}/COMMIT_FAIL
|
||||
touchz(endCommitFailureFile, commitJobIsRepeatable);
|
||||
} catch (Exception e2) {
|
||||
LOG.error("could not create failure file.", e2);
|
||||
}
|
||||
context.getEventHandler().handle(
|
||||
new JobCommitFailedEvent(event.getJobID(),
|
||||
StringUtils.stringifyException(e)));
|
||||
} finally {
|
||||
jobCommitEnded();
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
##### CommitSucceededTransition
|
||||
|
||||
提交成功的事件处理handler为CommitSucceededTransition,核心处理逻辑如下:
|
||||
|
||||
```java
|
||||
job.logJobHistoryFinishedEvent();
|
||||
job.finished(JobStateInternal.SUCCEEDED);
|
||||
```
|
29
yarn/yarn_event_detail.md
Normal file
29
yarn/yarn_event_detail.md
Normal file
@ -0,0 +1,29 @@
|
||||
# 简介
|
||||
|
||||
Yarn状态机的基础部分参见:[Yarn 状态机以及事件机制](./yarn_event.md)
|
||||
|
||||
本章主要将Yarn当中详细的事件以及处理过程。
|
||||
|
||||
AsyncDispatcher是中央处理器的核心线程。通过使用AsyncDispatcher的对象可以分析Yarn里面有多少个中央处理器,每个处理器都由什么用途。
|
||||
|
||||
|
||||
|
||||
## Component dispatcher
|
||||
|
||||
当前的处理器注册了下面几个事件:
|
||||
|
||||
- ServiceEventHandler:
|
||||
- ComponentEventHandler:
|
||||
- ComponentInstanceEventHandler:
|
||||
|
||||
```java
|
||||
dispatcher.register(ServiceEventType.class, new ServiceEventHandler());
|
||||
dispatcher.register(ComponentEventType.class, new ComponentEventHandler());
|
||||
dispatcher.register(ComponentInstanceEventType.class,
|
||||
new ComponentInstanceEventHandler());
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user