redis_study/tests/integration/replication.tcl

692 lines
29 KiB
Tcl
Raw Normal View History

2020-09-05 04:01:22 +00:00
proc log_file_matches {log pattern} {
set fp [open $log r]
set content [read $fp]
close $fp
string match $pattern $content
}
start_server {tags {"repl"}} {
set slave [srv 0 client]
set slave_host [srv 0 host]
set slave_port [srv 0 port]
set slave_log [srv 0 stdout]
start_server {} {
set master [srv 0 client]
set master_host [srv 0 host]
set master_port [srv 0 port]
# Configure the master in order to hang waiting for the BGSAVE
# operation, so that the slave remains in the handshake state.
$master config set repl-diskless-sync yes
$master config set repl-diskless-sync-delay 1000
# Use a short replication timeout on the slave, so that if there
# are no bugs the timeout is triggered in a reasonable amount
# of time.
$slave config set repl-timeout 5
# Start the replication process...
$slave slaveof $master_host $master_port
test {Slave enters handshake} {
wait_for_condition 50 1000 {
[string match *handshake* [$slave role]]
} else {
fail "Replica does not enter handshake state"
}
}
# But make the master unable to send
# the periodic newlines to refresh the connection. The slave
# should detect the timeout.
$master debug sleep 10
test {Slave is able to detect timeout during handshake} {
wait_for_condition 50 1000 {
[log_file_matches $slave_log "*Timeout connecting to the MASTER*"]
} else {
fail "Replica is not able to detect timeout"
}
}
}
}
start_server {tags {"repl"}} {
set A [srv 0 client]
set A_host [srv 0 host]
set A_port [srv 0 port]
start_server {} {
set B [srv 0 client]
set B_host [srv 0 host]
set B_port [srv 0 port]
test {Set instance A as slave of B} {
$A slaveof $B_host $B_port
wait_for_condition 50 100 {
[lindex [$A role] 0] eq {slave} &&
[string match {*master_link_status:up*} [$A info replication]]
} else {
fail "Can't turn the instance into a replica"
}
}
test {INCRBYFLOAT replication, should not remove expire} {
r set test 1 EX 100
r incrbyfloat test 0.1
after 1000
assert_equal [$A debug digest] [$B debug digest]
}
test {BRPOPLPUSH replication, when blocking against empty list} {
set rd [redis_deferring_client]
$rd brpoplpush a b 5
r lpush a foo
wait_for_condition 50 100 {
[$A debug digest] eq [$B debug digest]
} else {
fail "Master and replica have different digest: [$A debug digest] VS [$B debug digest]"
}
}
test {BRPOPLPUSH replication, list exists} {
set rd [redis_deferring_client]
r lpush c 1
r lpush c 2
r lpush c 3
$rd brpoplpush c d 5
after 1000
assert_equal [$A debug digest] [$B debug digest]
}
test {BLPOP followed by role change, issue #2473} {
set rd [redis_deferring_client]
$rd blpop foo 0 ; # Block while B is a master
# Turn B into master of A
$A slaveof no one
$B slaveof $A_host $A_port
wait_for_condition 50 100 {
[lindex [$B role] 0] eq {slave} &&
[string match {*master_link_status:up*} [$B info replication]]
} else {
fail "Can't turn the instance into a replica"
}
# Push elements into the "foo" list of the new replica.
# If the client is still attached to the instance, we'll get
# a desync between the two instances.
$A rpush foo a b c
after 100
wait_for_condition 50 100 {
[$A debug digest] eq [$B debug digest] &&
[$A lrange foo 0 -1] eq {a b c} &&
[$B lrange foo 0 -1] eq {a b c}
} else {
fail "Master and replica have different digest: [$A debug digest] VS [$B debug digest]"
}
}
}
}
start_server {tags {"repl"}} {
r set mykey foo
start_server {} {
test {Second server should have role master at first} {
s role
} {master}
test {SLAVEOF should start with link status "down"} {
r slaveof [srv -1 host] [srv -1 port]
s master_link_status
} {down}
test {The role should immediately be changed to "replica"} {
s role
} {slave}
wait_for_sync r
test {Sync should have transferred keys from master} {
r get mykey
} {foo}
test {The link status should be up} {
s master_link_status
} {up}
test {SET on the master should immediately propagate} {
r -1 set mykey bar
wait_for_condition 500 100 {
[r 0 get mykey] eq {bar}
} else {
fail "SET on master did not propagated on replica"
}
}
test {FLUSHALL should replicate} {
r -1 flushall
if {$::valgrind} {after 2000}
list [r -1 dbsize] [r 0 dbsize]
} {0 0}
test {ROLE in master reports master with a slave} {
set res [r -1 role]
lassign $res role offset slaves
assert {$role eq {master}}
assert {$offset > 0}
assert {[llength $slaves] == 1}
lassign [lindex $slaves 0] master_host master_port slave_offset
assert {$slave_offset <= $offset}
}
test {ROLE in slave reports slave in connected state} {
set res [r role]
lassign $res role master_host master_port slave_state slave_offset
assert {$role eq {slave}}
assert {$slave_state eq {connected}}
}
}
}
foreach mdl {no yes} {
foreach sdl {disabled swapdb} {
start_server {tags {"repl"}} {
set master [srv 0 client]
$master config set repl-diskless-sync $mdl
$master config set repl-diskless-sync-delay 1
set master_host [srv 0 host]
set master_port [srv 0 port]
set slaves {}
start_server {} {
lappend slaves [srv 0 client]
start_server {} {
lappend slaves [srv 0 client]
start_server {} {
lappend slaves [srv 0 client]
test "Connect multiple replicas at the same time (issue #141), master diskless=$mdl, replica diskless=$sdl" {
# start load handles only inside the test, so that the test can be skipped
set load_handle0 [start_bg_complex_data $master_host $master_port 9 100000000]
set load_handle1 [start_bg_complex_data $master_host $master_port 11 100000000]
set load_handle2 [start_bg_complex_data $master_host $master_port 12 100000000]
set load_handle3 [start_write_load $master_host $master_port 8]
set load_handle4 [start_write_load $master_host $master_port 4]
after 5000 ;# wait for some data to accumulate so that we have RDB part for the fork
# Send SLAVEOF commands to slaves
[lindex $slaves 0] config set repl-diskless-load $sdl
[lindex $slaves 1] config set repl-diskless-load $sdl
[lindex $slaves 2] config set repl-diskless-load $sdl
[lindex $slaves 0] slaveof $master_host $master_port
[lindex $slaves 1] slaveof $master_host $master_port
[lindex $slaves 2] slaveof $master_host $master_port
# Wait for all the three slaves to reach the "online"
# state from the POV of the master.
set retry 500
while {$retry} {
set info [r -3 info]
if {[string match {*slave0:*state=online*slave1:*state=online*slave2:*state=online*} $info]} {
break
} else {
incr retry -1
after 100
}
}
if {$retry == 0} {
error "assertion:Slaves not correctly synchronized"
}
# Wait that slaves acknowledge they are online so
# we are sure that DBSIZE and DEBUG DIGEST will not
# fail because of timing issues.
wait_for_condition 500 100 {
[lindex [[lindex $slaves 0] role] 3] eq {connected} &&
[lindex [[lindex $slaves 1] role] 3] eq {connected} &&
[lindex [[lindex $slaves 2] role] 3] eq {connected}
} else {
fail "Slaves still not connected after some time"
}
# Stop the write load
stop_bg_complex_data $load_handle0
stop_bg_complex_data $load_handle1
stop_bg_complex_data $load_handle2
stop_write_load $load_handle3
stop_write_load $load_handle4
# Make sure that slaves and master have same
# number of keys
wait_for_condition 500 100 {
[$master dbsize] == [[lindex $slaves 0] dbsize] &&
[$master dbsize] == [[lindex $slaves 1] dbsize] &&
[$master dbsize] == [[lindex $slaves 2] dbsize]
} else {
fail "Different number of keys between master and replica after too long time."
}
# Check digests
set digest [$master debug digest]
set digest0 [[lindex $slaves 0] debug digest]
set digest1 [[lindex $slaves 1] debug digest]
set digest2 [[lindex $slaves 2] debug digest]
assert {$digest ne 0000000000000000000000000000000000000000}
assert {$digest eq $digest0}
assert {$digest eq $digest1}
assert {$digest eq $digest2}
}
}
}
}
}
}
}
start_server {tags {"repl"}} {
set master [srv 0 client]
set master_host [srv 0 host]
set master_port [srv 0 port]
start_server {} {
test "Master stream is correctly processed while the replica has a script in -BUSY state" {
set load_handle0 [start_write_load $master_host $master_port 3]
set slave [srv 0 client]
$slave config set lua-time-limit 500
$slave slaveof $master_host $master_port
# Wait for the slave to be online
wait_for_condition 500 100 {
[lindex [$slave role] 3] eq {connected}
} else {
fail "Replica still not connected after some time"
}
# Wait some time to make sure the master is sending data
# to the slave.
after 5000
# Stop the ability of the slave to process data by sendig
# a script that will put it in BUSY state.
$slave eval {for i=1,3000000000 do end} 0
# Wait some time again so that more master stream will
# be processed.
after 2000
# Stop the write load
stop_write_load $load_handle0
# number of keys
wait_for_condition 500 100 {
[$master debug digest] eq [$slave debug digest]
} else {
fail "Different datasets between replica and master"
}
}
}
}
test {slave fails full sync and diskless load swapdb recovers it} {
start_server {tags {"repl"}} {
set slave [srv 0 client]
set slave_host [srv 0 host]
set slave_port [srv 0 port]
set slave_log [srv 0 stdout]
start_server {} {
set master [srv 0 client]
set master_host [srv 0 host]
set master_port [srv 0 port]
# Put different data sets on the master and slave
# we need to put large keys on the master since the slave replies to info only once in 2mb
$slave debug populate 2000 slave 10
$master debug populate 200 master 100000
$master config set rdbcompression no
# Set master and slave to use diskless replication
$master config set repl-diskless-sync yes
$master config set repl-diskless-sync-delay 0
$slave config set repl-diskless-load swapdb
# Set master with a slow rdb generation, so that we can easily disconnect it mid sync
# 10ms per key, with 200 keys is 2 seconds
$master config set rdb-key-save-delay 10000
# Start the replication process...
$slave slaveof $master_host $master_port
# wait for the slave to start reading the rdb
wait_for_condition 50 100 {
[s -1 loading] eq 1
} else {
fail "Replica didn't get into loading mode"
}
# make sure that next sync will not start immediately so that we can catch the slave in betweeen syncs
$master config set repl-diskless-sync-delay 5
# for faster server shutdown, make rdb saving fast again (the fork is already uses the slow one)
$master config set rdb-key-save-delay 0
# waiting slave to do flushdb (key count drop)
wait_for_condition 50 100 {
2000 != [scan [regexp -inline {keys\=([\d]*)} [$slave info keyspace]] keys=%d]
} else {
fail "Replica didn't flush"
}
# make sure we're still loading
assert_equal [s -1 loading] 1
# kill the slave connection on the master
set killed [$master client kill type slave]
# wait for loading to stop (fail)
wait_for_condition 50 100 {
[s -1 loading] eq 0
} else {
fail "Replica didn't disconnect"
}
# make sure the original keys were restored
assert_equal [$slave dbsize] 2000
}
}
}
test {diskless loading short read} {
start_server {tags {"repl"}} {
set replica [srv 0 client]
set replica_host [srv 0 host]
set replica_port [srv 0 port]
start_server {} {
set master [srv 0 client]
set master_host [srv 0 host]
set master_port [srv 0 port]
# Set master and replica to use diskless replication
$master config set repl-diskless-sync yes
$master config set rdbcompression no
$replica config set repl-diskless-load swapdb
# Try to fill the master with all types of data types / encodings
for {set k 0} {$k < 3} {incr k} {
for {set i 0} {$i < 10} {incr i} {
r set "$k int_$i" [expr {int(rand()*10000)}]
r expire "$k int_$i" [expr {int(rand()*10000)}]
r set "$k string_$i" [string repeat A [expr {int(rand()*1000000)}]]
r hset "$k hash_small" [string repeat A [expr {int(rand()*10)}]] 0[string repeat A [expr {int(rand()*10)}]]
r hset "$k hash_large" [string repeat A [expr {int(rand()*10000)}]] [string repeat A [expr {int(rand()*1000000)}]]
r sadd "$k set_small" [string repeat A [expr {int(rand()*10)}]]
r sadd "$k set_large" [string repeat A [expr {int(rand()*1000000)}]]
r zadd "$k zset_small" [expr {rand()}] [string repeat A [expr {int(rand()*10)}]]
r zadd "$k zset_large" [expr {rand()}] [string repeat A [expr {int(rand()*1000000)}]]
r lpush "$k list_small" [string repeat A [expr {int(rand()*10)}]]
r lpush "$k list_large" [string repeat A [expr {int(rand()*1000000)}]]
for {set j 0} {$j < 10} {incr j} {
r xadd "$k stream" * foo "asdf" bar "1234"
}
r xgroup create "$k stream" "mygroup_$i" 0
r xreadgroup GROUP "mygroup_$i" Alice COUNT 1 STREAMS "$k stream" >
}
}
# Start the replication process...
$master config set repl-diskless-sync-delay 0
$replica replicaof $master_host $master_port
# kill the replication at various points
set attempts 3
if {$::accurate} { set attempts 10 }
for {set i 0} {$i < $attempts} {incr i} {
# wait for the replica to start reading the rdb
# using the log file since the replica only responds to INFO once in 2mb
wait_for_log_message -1 "*Loading DB in memory*" 5 2000 1
# add some additional random sleep so that we kill the master on a different place each time
after [expr {int(rand()*100)}]
# kill the replica connection on the master
set killed [$master client kill type replica]
if {[catch {
set res [wait_for_log_message -1 "*Internal error in RDB*" 5 100 10]
if {$::verbose} {
puts $res
}
}]} {
puts "failed triggering short read"
# force the replica to try another full sync
$master client kill type replica
$master set asdf asdf
# the side effect of resizing the backlog is that it is flushed (16k is the min size)
$master config set repl-backlog-size [expr {16384 + $i}]
}
# wait for loading to stop (fail)
wait_for_condition 100 10 {
[s -1 loading] eq 0
} else {
fail "Replica didn't disconnect"
}
}
# enable fast shutdown
$master config set rdb-key-save-delay 0
}
}
}
# get current stime and utime metrics for a thread (since it's creation)
proc get_cpu_metrics { statfile } {
if { [ catch {
set fid [ open $statfile r ]
set data [ read $fid 1024 ]
::close $fid
set data [ split $data ]
;## number of jiffies it has been scheduled...
set utime [ lindex $data 13 ]
set stime [ lindex $data 14 ]
} err ] } {
error "assertion:can't parse /proc: $err"
}
set mstime [clock milliseconds]
return [ list $mstime $utime $stime ]
}
# compute %utime and %stime of a thread between two measurements
proc compute_cpu_usage {start end} {
set clock_ticks [exec getconf CLK_TCK]
# convert ms time to jiffies and calc delta
set dtime [ expr { ([lindex $end 0] - [lindex $start 0]) * double($clock_ticks) / 1000 } ]
set utime [ expr { [lindex $end 1] - [lindex $start 1] } ]
set stime [ expr { [lindex $end 2] - [lindex $start 2] } ]
set pucpu [ expr { ($utime / $dtime) * 100 } ]
set pscpu [ expr { ($stime / $dtime) * 100 } ]
return [ list $pucpu $pscpu ]
}
# test diskless rdb pipe with multiple replicas, which may drop half way
start_server {tags {"repl"}} {
set master [srv 0 client]
$master config set repl-diskless-sync yes
$master config set repl-diskless-sync-delay 1
set master_host [srv 0 host]
set master_port [srv 0 port]
set master_pid [srv 0 pid]
# put enough data in the db that the rdb file will be bigger than the socket buffers
# and since we'll have key-load-delay of 100, 20000 keys will take at least 2 seconds
# we also need the replica to process requests during transfer (which it does only once in 2mb)
$master debug populate 20000 test 10000
$master config set rdbcompression no
# If running on Linux, we also measure utime/stime to detect possible I/O handling issues
set os [catch {exec unamee}]
set measure_time [expr {$os == "Linux"} ? 1 : 0]
foreach all_drop {no slow fast all} {
test "diskless $all_drop replicas drop during rdb pipe" {
set replicas {}
set replicas_alive {}
# start one replica that will read the rdb fast, and one that will be slow
start_server {} {
lappend replicas [srv 0 client]
lappend replicas_alive [srv 0 client]
start_server {} {
lappend replicas [srv 0 client]
lappend replicas_alive [srv 0 client]
# start replication
# it's enough for just one replica to be slow, and have it's write handler enabled
# so that the whole rdb generation process is bound to that
[lindex $replicas 0] config set repl-diskless-load swapdb
[lindex $replicas 0] config set key-load-delay 100
[lindex $replicas 0] replicaof $master_host $master_port
[lindex $replicas 1] replicaof $master_host $master_port
# wait for the replicas to start reading the rdb
# using the log file since the replica only responds to INFO once in 2mb
wait_for_log_message -1 "*Loading DB in memory*" 8 800 10
if {$measure_time} {
set master_statfile "/proc/$master_pid/stat"
set master_start_metrics [get_cpu_metrics $master_statfile]
set start_time [clock seconds]
}
# wait a while so that the pipe socket writer will be
# blocked on write (since replica 0 is slow to read from the socket)
after 500
# add some command to be present in the command stream after the rdb.
$master incr $all_drop
# disconnect replicas depending on the current test
if {$all_drop == "all" || $all_drop == "fast"} {
exec kill [srv 0 pid]
set replicas_alive [lreplace $replicas_alive 1 1]
}
if {$all_drop == "all" || $all_drop == "slow"} {
exec kill [srv -1 pid]
set replicas_alive [lreplace $replicas_alive 0 0]
}
# wait for rdb child to exit
wait_for_condition 500 100 {
[s -2 rdb_bgsave_in_progress] == 0
} else {
fail "rdb child didn't terminate"
}
# make sure we got what we were aiming for, by looking for the message in the log file
if {$all_drop == "all"} {
wait_for_log_message -2 "*Diskless rdb transfer, last replica dropped, killing fork child*" 12 1 1
}
if {$all_drop == "no"} {
wait_for_log_message -2 "*Diskless rdb transfer, done reading from pipe, 2 replicas still up*" 12 1 1
}
if {$all_drop == "slow" || $all_drop == "fast"} {
wait_for_log_message -2 "*Diskless rdb transfer, done reading from pipe, 1 replicas still up*" 12 1 1
}
# make sure we don't have a busy loop going thought epoll_wait
if {$measure_time} {
set master_end_metrics [get_cpu_metrics $master_statfile]
set time_elapsed [expr {[clock seconds]-$start_time}]
set master_cpu [compute_cpu_usage $master_start_metrics $master_end_metrics]
set master_utime [lindex $master_cpu 0]
set master_stime [lindex $master_cpu 1]
if {$::verbose} {
puts "elapsed: $time_elapsed"
puts "master utime: $master_utime"
puts "master stime: $master_stime"
}
if {$all_drop == "all" || $all_drop == "slow"} {
assert {$master_utime < 70}
assert {$master_stime < 70}
}
if {$all_drop == "none" || $all_drop == "fast"} {
assert {$master_utime < 15}
assert {$master_stime < 15}
}
}
# verify the data integrity
foreach replica $replicas_alive {
# Wait that replicas acknowledge they are online so
# we are sure that DBSIZE and DEBUG DIGEST will not
# fail because of timing issues.
wait_for_condition 150 100 {
[lindex [$replica role] 3] eq {connected}
} else {
fail "replicas still not connected after some time"
}
# Make sure that replicas and master have same
# number of keys
wait_for_condition 50 100 {
[$master dbsize] == [$replica dbsize]
} else {
fail "Different number of keys between master and replicas after too long time."
}
# Check digests
set digest [$master debug digest]
set digest0 [$replica debug digest]
assert {$digest ne 0000000000000000000000000000000000000000}
assert {$digest eq $digest0}
}
}
}
}
}
}
test {replicaof right after disconnection} {
# this is a rare race condition that was reproduced sporadically by the psync2 unit.
# see details in #7205
start_server {tags {"repl"}} {
set replica1 [srv 0 client]
set replica1_host [srv 0 host]
set replica1_port [srv 0 port]
set replica1_log [srv 0 stdout]
start_server {} {
set replica2 [srv 0 client]
set replica2_host [srv 0 host]
set replica2_port [srv 0 port]
set replica2_log [srv 0 stdout]
start_server {} {
set master [srv 0 client]
set master_host [srv 0 host]
set master_port [srv 0 port]
$replica1 replicaof $master_host $master_port
$replica2 replicaof $master_host $master_port
wait_for_condition 50 100 {
[string match {*master_link_status:up*} [$replica1 info replication]] &&
[string match {*master_link_status:up*} [$replica2 info replication]]
} else {
fail "Can't turn the instance into a replica"
}
set rd [redis_deferring_client -1]
$rd debug sleep 1
after 100
# when replica2 will wake up from the sleep it will find both disconnection
# from it's master and also a replicaof command at the same event loop
$master client kill type replica
$replica2 replicaof $replica1_host $replica1_port
$rd read
wait_for_condition 50 100 {
[string match {*master_link_status:up*} [$replica2 info replication]]
} else {
fail "role change failed."
}
# make sure psync succeeded, and there were no unexpected full syncs.
assert_equal [status $master sync_full] 2
assert_equal [status $replica1 sync_full] 0
assert_equal [status $replica2 sync_full] 0
}
}
}
}