redis_study/src/ziplist.c
2020-09-05 12:01:22 +08:00

1933 lines
69 KiB
C

/* The ziplist is a specially encoded dually linked list that is designed
* to be very memory efficient. It stores both strings and integer values,
* where integers are encoded as actual integers instead of a series of
* characters. It allows push and pop operations on either side of the list
* in O(1) time. However, because every operation requires a reallocation of
* the memory used by the ziplist, the actual complexity is related to the
* amount of memory used by the ziplist.
*
* ----------------------------------------------------------------------------
*
* ZIPLIST OVERALL LAYOUT
* ======================
*
* The general layout of the ziplist is as follows:
*
* <zlbytes> <zltail> <zllen> <entry> <entry> ... <entry> <zlend>
*
* NOTE: all fields are stored in little endian, if not specified otherwise.
*
* <uint32_t zlbytes> is an unsigned integer to hold the number of bytes that
* the ziplist occupies, including the four bytes of the zlbytes field itself.
* This value needs to be stored to be able to resize the entire structure
* without the need to traverse it first.
*
* <uint32_t zltail> is the offset to the last entry in the list. This allows
* a pop operation on the far side of the list without the need for full
* traversal.
*
* <uint16_t zllen> is the number of entries. When there are more than
* 2^16-2 entries, this value is set to 2^16-1 and we need to traverse the
* entire list to know how many items it holds.
*
* <uint8_t zlend> is a special entry representing the end of the ziplist.
* Is encoded as a single byte equal to 255. No other normal entry starts
* with a byte set to the value of 255.
*
* ZIPLIST ENTRIES
* ===============
*
* Every entry in the ziplist is prefixed by metadata that contains two pieces
* of information. First, the length of the previous entry is stored to be
* able to traverse the list from back to front. Second, the entry encoding is
* provided. It represents the entry type, integer or string, and in the case
* of strings it also represents the length of the string payload.
* So a complete entry is stored like this:
*
* <prevlen> <encoding> <entry-data>
*
* Sometimes the encoding represents the entry itself, like for small integers
* as we'll see later. In such a case the <entry-data> part is missing, and we
* could have just:
*
* <prevlen> <encoding>
*
* The length of the previous entry, <prevlen>, is encoded in the following way:
* If this length is smaller than 254 bytes, it will only consume a single
* byte representing the length as an unsinged 8 bit integer. When the length
* is greater than or equal to 254, it will consume 5 bytes. The first byte is
* set to 254 (FE) to indicate a larger value is following. The remaining 4
* bytes take the length of the previous entry as value.
*
* So practically an entry is encoded in the following way:
*
* <prevlen from 0 to 253> <encoding> <entry>
*
* Or alternatively if the previous entry length is greater than 253 bytes
* the following encoding is used:
*
* 0xFE <4 bytes unsigned little endian prevlen> <encoding> <entry>
*
* The encoding field of the entry depends on the content of the
* entry. When the entry is a string, the first 2 bits of the encoding first
* byte will hold the type of encoding used to store the length of the string,
* followed by the actual length of the string. When the entry is an integer
* the first 2 bits are both set to 1. The following 2 bits are used to specify
* what kind of integer will be stored after this header. An overview of the
* different types and encodings is as follows. The first byte is always enough
* to determine the kind of entry.
*
* |00pppppp| - 1 byte
* String value with length less than or equal to 63 bytes (6 bits).
* "pppppp" represents the unsigned 6 bit length.
* |01pppppp|qqqqqqqq| - 2 bytes
* String value with length less than or equal to 16383 bytes (14 bits).
* IMPORTANT: The 14 bit number is stored in big endian.
* |10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes
* String value with length greater than or equal to 16384 bytes.
* Only the 4 bytes following the first byte represents the length
* up to 32^2-1. The 6 lower bits of the first byte are not used and
* are set to zero.
* IMPORTANT: The 32 bit number is stored in big endian.
* |11000000| - 3 bytes
* Integer encoded as int16_t (2 bytes).
* |11010000| - 5 bytes
* Integer encoded as int32_t (4 bytes).
* |11100000| - 9 bytes
* Integer encoded as int64_t (8 bytes).
* |11110000| - 4 bytes
* Integer encoded as 24 bit signed (3 bytes).
* |11111110| - 2 bytes
* Integer encoded as 8 bit signed (1 byte).
* |1111xxxx| - (with xxxx between 0000 and 1101) immediate 4 bit integer.
* Unsigned integer from 0 to 12. The encoded value is actually from
* 1 to 13 because 0000 and 1111 can not be used, so 1 should be
* subtracted from the encoded 4 bit value to obtain the right value.
* |11111111| - End of ziplist special entry.
*
* Like for the ziplist header, all the integers are represented in little
* endian byte order, even when this code is compiled in big endian systems.
*
* EXAMPLES OF ACTUAL ZIPLISTS
* ===========================
*
* The following is a ziplist containing the two elements representing
* the strings "2" and "5". It is composed of 15 bytes, that we visually
* split into sections:
*
* [0f 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [ff]
* | | | | | |
* zlbytes zltail entries "2" "5" end
*
* The first 4 bytes represent the number 15, that is the number of bytes
* the whole ziplist is composed of. The second 4 bytes are the offset
* at which the last ziplist entry is found, that is 12, in fact the
* last entry, that is "5", is at offset 12 inside the ziplist.
* The next 16 bit integer represents the number of elements inside the
* ziplist, its value is 2 since there are just two elements inside.
* Finally "00 f3" is the first entry representing the number 2. It is
* composed of the previous entry length, which is zero because this is
* our first entry, and the byte F3 which corresponds to the encoding
* |1111xxxx| with xxxx between 0001 and 1101. We need to remove the "F"
* higher order bits 1111, and subtract 1 from the "3", so the entry value
* is "2". The next entry has a prevlen of 02, since the first entry is
* composed of exactly two bytes. The entry itself, F6, is encoded exactly
* like the first entry, and 6-1 = 5, so the value of the entry is 5.
* Finally the special entry FF signals the end of the ziplist.
*
* Adding another element to the above string with the value "Hello World"
* allows us to show how the ziplist encodes small strings. We'll just show
* the hex dump of the entry itself. Imagine the bytes as following the
* entry that stores "5" in the ziplist above:
*
* [02] [0b] [48 65 6c 6c 6f 20 57 6f 72 6c 64]
*
* The first byte, 02, is the length of the previous entry. The next
* byte represents the encoding in the pattern |00pppppp| that means
* that the entry is a string of length <pppppp>, so 0B means that
* an 11 bytes string follows. From the third byte (48) to the last (64)
* there are just the ASCII characters for "Hello World".
*
* ----------------------------------------------------------------------------
*
* Copyright (c) 2009-2012, Pieter Noordhuis <pcnoordhuis at gmail dot com>
* Copyright (c) 2009-2017, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <limits.h>
#include "zmalloc.h"
#include "util.h"
#include "ziplist.h"
#include "endianconv.h"
#include "redisassert.h"
#define ZIP_END 255 /* Special "end of ziplist" entry. */
#define ZIP_BIG_PREVLEN 254 /* Max number of bytes of the previous entry, for
the "prevlen" field prefixing each entry, to be
represented with just a single byte. Otherwise
it is represented as FF AA BB CC DD, where
AA BB CC DD are a 4 bytes unsigned integer
representing the previous entry len. */
/* Different encoding/length possibilities */
#define ZIP_STR_MASK 0xc0
#define ZIP_INT_MASK 0x30
#define ZIP_STR_06B (0 << 6)
#define ZIP_STR_14B (1 << 6)
#define ZIP_STR_32B (2 << 6)
#define ZIP_INT_16B (0xc0 | 0<<4)
#define ZIP_INT_32B (0xc0 | 1<<4)
#define ZIP_INT_64B (0xc0 | 2<<4)
#define ZIP_INT_24B (0xc0 | 3<<4)
#define ZIP_INT_8B 0xfe
/* 4 bit integer immediate encoding |1111xxxx| with xxxx between
* 0001 and 1101. */
#define ZIP_INT_IMM_MASK 0x0f /* Mask to extract the 4 bits value. To add
one is needed to reconstruct the value. */
#define ZIP_INT_IMM_MIN 0xf1 /* 11110001 */
#define ZIP_INT_IMM_MAX 0xfd /* 11111101 */
#define INT24_MAX 0x7fffff
#define INT24_MIN (-INT24_MAX - 1)
/* Macro to determine if the entry is a string. String entries never start
* with "11" as most significant bits of the first byte. */
#define ZIP_IS_STR(enc) (((enc) & ZIP_STR_MASK) < ZIP_STR_MASK)
/* Utility macros.*/
/* Return total bytes a ziplist is composed of. */
#define ZIPLIST_BYTES(zl) (*((uint32_t*)(zl)))
/* Return the offset of the last item inside the ziplist. */
#define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
/* Return the length of a ziplist, or UINT16_MAX if the length cannot be
* determined without scanning the whole ziplist. */
#define ZIPLIST_LENGTH(zl) (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
/* The size of a ziplist header: two 32 bit integers for the total
* bytes count and last item offset. One 16 bit integer for the number
* of items field. */
#define ZIPLIST_HEADER_SIZE (sizeof(uint32_t)*2+sizeof(uint16_t))
/* Size of the "end of ziplist" entry. Just one byte. */
#define ZIPLIST_END_SIZE (sizeof(uint8_t))
/* Return the pointer to the first entry of a ziplist. */
#define ZIPLIST_ENTRY_HEAD(zl) ((zl)+ZIPLIST_HEADER_SIZE)
/* Return the pointer to the last entry of a ziplist, using the
* last entry offset inside the ziplist header. */
#define ZIPLIST_ENTRY_TAIL(zl) ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)))
/* Return the pointer to the last byte of a ziplist, which is, the
* end of ziplist FF entry. */
#define ZIPLIST_ENTRY_END(zl) ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1)
/* Increment the number of items field in the ziplist header. Note that this
* macro should never overflow the unsigned 16 bit integer, since entries are
* always pushed one at a time. When UINT16_MAX is reached we want the count
* to stay there to signal that a full scan is needed to get the number of
* items inside the ziplist. */
#define ZIPLIST_INCR_LENGTH(zl,incr) { \
if (ZIPLIST_LENGTH(zl) < UINT16_MAX) \
ZIPLIST_LENGTH(zl) = intrev16ifbe(intrev16ifbe(ZIPLIST_LENGTH(zl))+incr); \
}
/* We use this function to receive information about a ziplist entry.
* Note that this is not how the data is actually encoded, is just what we
* get filled by a function in order to operate more easily. */
typedef struct zlentry {
unsigned int prevrawlensize; /* Bytes used to encode the previous entry len*/
unsigned int prevrawlen; /* Previous entry len. */
unsigned int lensize; /* Bytes used to encode this entry type/len.
For example strings have a 1, 2 or 5 bytes
header. Integers always use a single byte.*/
unsigned int len; /* Bytes used to represent the actual entry.
For strings this is just the string length
while for integers it is 1, 2, 3, 4, 8 or
0 (for 4 bit immediate) depending on the
number range. */
unsigned int headersize; /* prevrawlensize + lensize. */
unsigned char encoding; /* Set to ZIP_STR_* or ZIP_INT_* depending on
the entry encoding. However for 4 bits
immediate integers this can assume a range
of values and must be range-checked. */
unsigned char *p; /* Pointer to the very start of the entry, that
is, this points to prev-entry-len field. */
} zlentry;
#define ZIPLIST_ENTRY_ZERO(zle) { \
(zle)->prevrawlensize = (zle)->prevrawlen = 0; \
(zle)->lensize = (zle)->len = (zle)->headersize = 0; \
(zle)->encoding = 0; \
(zle)->p = NULL; \
}
/* Extract the encoding from the byte pointed by 'ptr' and set it into
* 'encoding' field of the zlentry structure. */
#define ZIP_ENTRY_ENCODING(ptr, encoding) do { \
(encoding) = (ptr[0]); \
if ((encoding) < ZIP_STR_MASK) (encoding) &= ZIP_STR_MASK; \
} while(0)
/* Return bytes needed to store integer encoded by 'encoding'. */
unsigned int zipIntSize(unsigned char encoding) {
switch(encoding) {
case ZIP_INT_8B: return 1;
case ZIP_INT_16B: return 2;
case ZIP_INT_24B: return 3;
case ZIP_INT_32B: return 4;
case ZIP_INT_64B: return 8;
}
if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX)
return 0; /* 4 bit immediate */
panic("Invalid integer encoding 0x%02X", encoding);
return 0;
}
/* Write the encoidng header of the entry in 'p'. If p is NULL it just returns
* the amount of bytes required to encode such a length. Arguments:
*
* 'encoding' is the encoding we are using for the entry. It could be
* ZIP_INT_* or ZIP_STR_* or between ZIP_INT_IMM_MIN and ZIP_INT_IMM_MAX
* for single-byte small immediate integers.
*
* 'rawlen' is only used for ZIP_STR_* encodings and is the length of the
* srting that this entry represents.
*
* The function returns the number of bytes used by the encoding/length
* header stored in 'p'. */
unsigned int zipStoreEntryEncoding(unsigned char *p, unsigned char encoding, unsigned int rawlen) {
unsigned char len = 1, buf[5];
if (ZIP_IS_STR(encoding)) {
/* Although encoding is given it may not be set for strings,
* so we determine it here using the raw length. */
if (rawlen <= 0x3f) {
if (!p) return len;
buf[0] = ZIP_STR_06B | rawlen;
} else if (rawlen <= 0x3fff) {
len += 1;
if (!p) return len;
buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);
buf[1] = rawlen & 0xff;
} else {
len += 4;
if (!p) return len;
buf[0] = ZIP_STR_32B;
buf[1] = (rawlen >> 24) & 0xff;
buf[2] = (rawlen >> 16) & 0xff;
buf[3] = (rawlen >> 8) & 0xff;
buf[4] = rawlen & 0xff;
}
} else {
/* Implies integer encoding, so length is always 1. */
if (!p) return len;
buf[0] = encoding;
}
/* Store this length at p. */
memcpy(p,buf,len);
return len;
}
/* Decode the entry encoding type and data length (string length for strings,
* number of bytes used for the integer for integer entries) encoded in 'ptr'.
* The 'encoding' variable will hold the entry encoding, the 'lensize'
* variable will hold the number of bytes required to encode the entry
* length, and the 'len' variable will hold the entry length. */
#define ZIP_DECODE_LENGTH(ptr, encoding, lensize, len) do { \
ZIP_ENTRY_ENCODING((ptr), (encoding)); \
if ((encoding) < ZIP_STR_MASK) { \
if ((encoding) == ZIP_STR_06B) { \
(lensize) = 1; \
(len) = (ptr)[0] & 0x3f; \
} else if ((encoding) == ZIP_STR_14B) { \
(lensize) = 2; \
(len) = (((ptr)[0] & 0x3f) << 8) | (ptr)[1]; \
} else if ((encoding) == ZIP_STR_32B) { \
(lensize) = 5; \
(len) = ((ptr)[1] << 24) | \
((ptr)[2] << 16) | \
((ptr)[3] << 8) | \
((ptr)[4]); \
} else { \
panic("Invalid string encoding 0x%02X", (encoding)); \
} \
} else { \
(lensize) = 1; \
(len) = zipIntSize(encoding); \
} \
} while(0);
/* Encode the length of the previous entry and write it to "p". This only
* uses the larger encoding (required in __ziplistCascadeUpdate). */
int zipStorePrevEntryLengthLarge(unsigned char *p, unsigned int len) {
if (p != NULL) {
p[0] = ZIP_BIG_PREVLEN;
memcpy(p+1,&len,sizeof(len));
memrev32ifbe(p+1);
}
return 1+sizeof(len);
}
/* Encode the length of the previous entry and write it to "p". Return the
* number of bytes needed to encode this length if "p" is NULL. */
unsigned int zipStorePrevEntryLength(unsigned char *p, unsigned int len) {
if (p == NULL) {
return (len < ZIP_BIG_PREVLEN) ? 1 : sizeof(len)+1;
} else {
if (len < ZIP_BIG_PREVLEN) {
p[0] = len;
return 1;
} else {
return zipStorePrevEntryLengthLarge(p,len);
}
}
}
/* Return the number of bytes used to encode the length of the previous
* entry. The length is returned by setting the var 'prevlensize'. */
#define ZIP_DECODE_PREVLENSIZE(ptr, prevlensize) do { \
if ((ptr)[0] < ZIP_BIG_PREVLEN) { \
(prevlensize) = 1; \
} else { \
(prevlensize) = 5; \
} \
} while(0);
/* Return the length of the previous element, and the number of bytes that
* are used in order to encode the previous element length.
* 'ptr' must point to the prevlen prefix of an entry (that encodes the
* length of the previous entry in order to navigate the elements backward).
* The length of the previous entry is stored in 'prevlen', the number of
* bytes needed to encode the previous entry length are stored in
* 'prevlensize'. */
#define ZIP_DECODE_PREVLEN(ptr, prevlensize, prevlen) do { \
ZIP_DECODE_PREVLENSIZE(ptr, prevlensize); \
if ((prevlensize) == 1) { \
(prevlen) = (ptr)[0]; \
} else if ((prevlensize) == 5) { \
assert(sizeof((prevlen)) == 4); \
memcpy(&(prevlen), ((char*)(ptr)) + 1, 4); \
memrev32ifbe(&prevlen); \
} \
} while(0);
/* Given a pointer 'p' to the prevlen info that prefixes an entry, this
* function returns the difference in number of bytes needed to encode
* the prevlen if the previous entry changes of size.
*
* So if A is the number of bytes used right now to encode the 'prevlen'
* field.
*
* And B is the number of bytes that are needed in order to encode the
* 'prevlen' if the previous element will be updated to one of size 'len'.
*
* Then the function returns B - A
*
* So the function returns a positive number if more space is needed,
* a negative number if less space is needed, or zero if the same space
* is needed. */
int zipPrevLenByteDiff(unsigned char *p, unsigned int len) {
unsigned int prevlensize;
ZIP_DECODE_PREVLENSIZE(p, prevlensize);
return zipStorePrevEntryLength(NULL, len) - prevlensize;
}
/* Return the total number of bytes used by the entry pointed to by 'p'. */
unsigned int zipRawEntryLength(unsigned char *p) {
unsigned int prevlensize, encoding, lensize, len;
ZIP_DECODE_PREVLENSIZE(p, prevlensize);
ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
return prevlensize + lensize + len;
}
/* Check if string pointed to by 'entry' can be encoded as an integer.
* Stores the integer value in 'v' and its encoding in 'encoding'. */
int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
long long value;
if (entrylen >= 32 || entrylen == 0) return 0;
if (string2ll((char*)entry,entrylen,&value)) {
/* Great, the string can be encoded. Check what's the smallest
* of our encoding types that can hold this value. */
if (value >= 0 && value <= 12) {
*encoding = ZIP_INT_IMM_MIN+value;
} else if (value >= INT8_MIN && value <= INT8_MAX) {
*encoding = ZIP_INT_8B;
} else if (value >= INT16_MIN && value <= INT16_MAX) {
*encoding = ZIP_INT_16B;
} else if (value >= INT24_MIN && value <= INT24_MAX) {
*encoding = ZIP_INT_24B;
} else if (value >= INT32_MIN && value <= INT32_MAX) {
*encoding = ZIP_INT_32B;
} else {
*encoding = ZIP_INT_64B;
}
*v = value;
return 1;
}
return 0;
}
/* Store integer 'value' at 'p', encoded as 'encoding' */
void zipSaveInteger(unsigned char *p, int64_t value, unsigned char encoding) {
int16_t i16;
int32_t i32;
int64_t i64;
if (encoding == ZIP_INT_8B) {
((int8_t*)p)[0] = (int8_t)value;
} else if (encoding == ZIP_INT_16B) {
i16 = value;
memcpy(p,&i16,sizeof(i16));
memrev16ifbe(p);
} else if (encoding == ZIP_INT_24B) {
i32 = value<<8;
memrev32ifbe(&i32);
memcpy(p,((uint8_t*)&i32)+1,sizeof(i32)-sizeof(uint8_t));
} else if (encoding == ZIP_INT_32B) {
i32 = value;
memcpy(p,&i32,sizeof(i32));
memrev32ifbe(p);
} else if (encoding == ZIP_INT_64B) {
i64 = value;
memcpy(p,&i64,sizeof(i64));
memrev64ifbe(p);
} else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
/* Nothing to do, the value is stored in the encoding itself. */
} else {
assert(NULL);
}
}
/* Read integer encoded as 'encoding' from 'p' */
int64_t zipLoadInteger(unsigned char *p, unsigned char encoding) {
int16_t i16;
int32_t i32;
int64_t i64, ret = 0;
if (encoding == ZIP_INT_8B) {
ret = ((int8_t*)p)[0];
} else if (encoding == ZIP_INT_16B) {
memcpy(&i16,p,sizeof(i16));
memrev16ifbe(&i16);
ret = i16;
} else if (encoding == ZIP_INT_32B) {
memcpy(&i32,p,sizeof(i32));
memrev32ifbe(&i32);
ret = i32;
} else if (encoding == ZIP_INT_24B) {
i32 = 0;
memcpy(((uint8_t*)&i32)+1,p,sizeof(i32)-sizeof(uint8_t));
memrev32ifbe(&i32);
ret = i32>>8;
} else if (encoding == ZIP_INT_64B) {
memcpy(&i64,p,sizeof(i64));
memrev64ifbe(&i64);
ret = i64;
} else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
ret = (encoding & ZIP_INT_IMM_MASK)-1;
} else {
assert(NULL);
}
return ret;
}
/* Return a struct with all information about an entry. */
void zipEntry(unsigned char *p, zlentry *e) {
ZIP_DECODE_PREVLEN(p, e->prevrawlensize, e->prevrawlen);
ZIP_DECODE_LENGTH(p + e->prevrawlensize, e->encoding, e->lensize, e->len);
e->headersize = e->prevrawlensize + e->lensize;
e->p = p;
}
/* Create a new empty ziplist. */
unsigned char *ziplistNew(void) {
unsigned int bytes = ZIPLIST_HEADER_SIZE+ZIPLIST_END_SIZE;
unsigned char *zl = zmalloc(bytes);
ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);
ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);
ZIPLIST_LENGTH(zl) = 0;
zl[bytes-1] = ZIP_END;
return zl;
}
/* Resize the ziplist. */
unsigned char *ziplistResize(unsigned char *zl, unsigned int len) {
zl = zrealloc(zl,len);
ZIPLIST_BYTES(zl) = intrev32ifbe(len);
zl[len-1] = ZIP_END;
return zl;
}
/* When an entry is inserted, we need to set the prevlen field of the next
* entry to equal the length of the inserted entry. It can occur that this
* length cannot be encoded in 1 byte and the next entry needs to be grow
* a bit larger to hold the 5-byte encoded prevlen. This can be done for free,
* because this only happens when an entry is already being inserted (which
* causes a realloc and memmove). However, encoding the prevlen may require
* that this entry is grown as well. This effect may cascade throughout
* the ziplist when there are consecutive entries with a size close to
* ZIP_BIG_PREVLEN, so we need to check that the prevlen can be encoded in
* every consecutive entry.
*
* Note that this effect can also happen in reverse, where the bytes required
* to encode the prevlen field can shrink. This effect is deliberately ignored,
* because it can cause a "flapping" effect where a chain prevlen fields is
* first grown and then shrunk again after consecutive inserts. Rather, the
* field is allowed to stay larger than necessary, because a large prevlen
* field implies the ziplist is holding large entries anyway.
*
* The pointer "p" points to the first entry that does NOT need to be
* updated, i.e. consecutive fields MAY need an update. */
unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) {
size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), rawlen, rawlensize;
size_t offset, noffset, extra;
unsigned char *np;
zlentry cur, next;
while (p[0] != ZIP_END) {
zipEntry(p, &cur);
rawlen = cur.headersize + cur.len;
rawlensize = zipStorePrevEntryLength(NULL,rawlen);
/* Abort if there is no next entry. */
if (p[rawlen] == ZIP_END) break;
zipEntry(p+rawlen, &next);
/* Abort when "prevlen" has not changed. */
if (next.prevrawlen == rawlen) break;
if (next.prevrawlensize < rawlensize) {
/* The "prevlen" field of "next" needs more bytes to hold
* the raw length of "cur". */
offset = p-zl;
extra = rawlensize-next.prevrawlensize;
zl = ziplistResize(zl,curlen+extra);
p = zl+offset;
/* Current pointer and offset for next element. */
np = p+rawlen;
noffset = np-zl;
/* Update tail offset when next element is not the tail element. */
if ((zl+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))) != np) {
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+extra);
}
/* Move the tail to the back. */
memmove(np+rawlensize,
np+next.prevrawlensize,
curlen-noffset-next.prevrawlensize-1);
zipStorePrevEntryLength(np,rawlen);
/* Advance the cursor */
p += rawlen;
curlen += extra;
} else {
if (next.prevrawlensize > rawlensize) {
/* This would result in shrinking, which we want to avoid.
* So, set "rawlen" in the available bytes. */
zipStorePrevEntryLengthLarge(p+rawlen,rawlen);
} else {
zipStorePrevEntryLength(p+rawlen,rawlen);
}
/* Stop here, as the raw length of "next" has not changed. */
break;
}
}
return zl;
}
/* Delete "num" entries, starting at "p". Returns pointer to the ziplist. */
unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
unsigned int i, totlen, deleted = 0;
size_t offset;
int nextdiff = 0;
zlentry first, tail;
zipEntry(p, &first);
for (i = 0; p[0] != ZIP_END && i < num; i++) {
p += zipRawEntryLength(p);
deleted++;
}
totlen = p-first.p; /* Bytes taken by the element(s) to delete. */
if (totlen > 0) {
if (p[0] != ZIP_END) {
/* Storing `prevrawlen` in this entry may increase or decrease the
* number of bytes required compare to the current `prevrawlen`.
* There always is room to store this, because it was previously
* stored by an entry that is now being deleted. */
nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
/* Note that there is always space when p jumps backward: if
* the new previous entry is large, one of the deleted elements
* had a 5 bytes prevlen header, so there is for sure at least
* 5 bytes free and we need just 4. */
p -= nextdiff;
zipStorePrevEntryLength(p,first.prevrawlen);
/* Update offset for tail */
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))-totlen);
/* When the tail contains more than one entry, we need to take
* "nextdiff" in account as well. Otherwise, a change in the
* size of prevlen doesn't have an effect on the *tail* offset. */
zipEntry(p, &tail);
if (p[tail.headersize+tail.len] != ZIP_END) {
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
}
/* Move tail to the front of the ziplist */
memmove(first.p,p,
intrev32ifbe(ZIPLIST_BYTES(zl))-(p-zl)-1);
} else {
/* The entire tail was deleted. No need to move memory. */
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe((first.p-zl)-first.prevrawlen);
}
/* Resize and update length */
offset = first.p-zl;
zl = ziplistResize(zl, intrev32ifbe(ZIPLIST_BYTES(zl))-totlen+nextdiff);
ZIPLIST_INCR_LENGTH(zl,-deleted);
p = zl+offset;
/* When nextdiff != 0, the raw length of the next entry has changed, so
* we need to cascade the update throughout the ziplist */
if (nextdiff != 0)
zl = __ziplistCascadeUpdate(zl,p);
}
return zl;
}
/* Insert item at "p". */
unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen;
unsigned int prevlensize, prevlen = 0;
size_t offset;
int nextdiff = 0;
unsigned char encoding = 0;
long long value = 123456789; /* initialized to avoid warning. Using a value
that is easy to see if for some reason
we use it uninitialized. */
zlentry tail;
/* Find out prevlen for the entry that is inserted. */
if (p[0] != ZIP_END) {
ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
} else {
unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
if (ptail[0] != ZIP_END) {
prevlen = zipRawEntryLength(ptail);
}
}
/* See if the entry can be encoded */
if (zipTryEncoding(s,slen,&value,&encoding)) {
/* 'encoding' is set to the appropriate integer encoding */
reqlen = zipIntSize(encoding);
} else {
/* 'encoding' is untouched, however zipStoreEntryEncoding will use the
* string length to figure out how to encode it. */
reqlen = slen;
}
/* We need space for both the length of the previous entry and
* the length of the payload. */
reqlen += zipStorePrevEntryLength(NULL,prevlen);
reqlen += zipStoreEntryEncoding(NULL,encoding,slen);
/* When the insert position is not equal to the tail, we need to
* make sure that the next entry can hold this entry's length in
* its prevlen field. */
int forcelarge = 0;
nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
if (nextdiff == -4 && reqlen < 4) {
nextdiff = 0;
forcelarge = 1;
}
/* Store offset because a realloc may change the address of zl. */
offset = p-zl;
zl = ziplistResize(zl,curlen+reqlen+nextdiff);
p = zl+offset;
/* Apply memory move when necessary and update tail offset. */
if (p[0] != ZIP_END) {
/* Subtract one because of the ZIP_END bytes */
memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
/* Encode this entry's raw length in the next entry. */
if (forcelarge)
zipStorePrevEntryLengthLarge(p+reqlen,reqlen);
else
zipStorePrevEntryLength(p+reqlen,reqlen);
/* Update offset for tail */
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);
/* When the tail contains more than one entry, we need to take
* "nextdiff" in account as well. Otherwise, a change in the
* size of prevlen doesn't have an effect on the *tail* offset. */
zipEntry(p+reqlen, &tail);
if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
}
} else {
/* This element will be the new tail. */
ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
}
/* When nextdiff != 0, the raw length of the next entry has changed, so
* we need to cascade the update throughout the ziplist */
if (nextdiff != 0) {
offset = p-zl;
zl = __ziplistCascadeUpdate(zl,p+reqlen);
p = zl+offset;
}
/* Write the entry */
p += zipStorePrevEntryLength(p,prevlen);
p += zipStoreEntryEncoding(p,encoding,slen);
if (ZIP_IS_STR(encoding)) {
memcpy(p,s,slen);
} else {
zipSaveInteger(p,value,encoding);
}
ZIPLIST_INCR_LENGTH(zl,1);
return zl;
}
/* Merge ziplists 'first' and 'second' by appending 'second' to 'first'.
*
* NOTE: The larger ziplist is reallocated to contain the new merged ziplist.
* Either 'first' or 'second' can be used for the result. The parameter not
* used will be free'd and set to NULL.
*
* After calling this function, the input parameters are no longer valid since
* they are changed and free'd in-place.
*
* The result ziplist is the contents of 'first' followed by 'second'.
*
* On failure: returns NULL if the merge is impossible.
* On success: returns the merged ziplist (which is expanded version of either
* 'first' or 'second', also frees the other unused input ziplist, and sets the
* input ziplist argument equal to newly reallocated ziplist return value. */
unsigned char *ziplistMerge(unsigned char **first, unsigned char **second) {
/* If any params are null, we can't merge, so NULL. */
if (first == NULL || *first == NULL || second == NULL || *second == NULL)
return NULL;
/* Can't merge same list into itself. */
if (*first == *second)
return NULL;
size_t first_bytes = intrev32ifbe(ZIPLIST_BYTES(*first));
size_t first_len = intrev16ifbe(ZIPLIST_LENGTH(*first));
size_t second_bytes = intrev32ifbe(ZIPLIST_BYTES(*second));
size_t second_len = intrev16ifbe(ZIPLIST_LENGTH(*second));
int append;
unsigned char *source, *target;
size_t target_bytes, source_bytes;
/* Pick the largest ziplist so we can resize easily in-place.
* We must also track if we are now appending or prepending to
* the target ziplist. */
if (first_len >= second_len) {
/* retain first, append second to first. */
target = *first;
target_bytes = first_bytes;
source = *second;
source_bytes = second_bytes;
append = 1;
} else {
/* else, retain second, prepend first to second. */
target = *second;
target_bytes = second_bytes;
source = *first;
source_bytes = first_bytes;
append = 0;
}
/* Calculate final bytes (subtract one pair of metadata) */
size_t zlbytes = first_bytes + second_bytes -
ZIPLIST_HEADER_SIZE - ZIPLIST_END_SIZE;
size_t zllength = first_len + second_len;
/* Combined zl length should be limited within UINT16_MAX */
zllength = zllength < UINT16_MAX ? zllength : UINT16_MAX;
/* Save offset positions before we start ripping memory apart. */
size_t first_offset = intrev32ifbe(ZIPLIST_TAIL_OFFSET(*first));
size_t second_offset = intrev32ifbe(ZIPLIST_TAIL_OFFSET(*second));
/* Extend target to new zlbytes then append or prepend source. */
target = zrealloc(target, zlbytes);
if (append) {
/* append == appending to target */
/* Copy source after target (copying over original [END]):
* [TARGET - END, SOURCE - HEADER] */
memcpy(target + target_bytes - ZIPLIST_END_SIZE,
source + ZIPLIST_HEADER_SIZE,
source_bytes - ZIPLIST_HEADER_SIZE);
} else {
/* !append == prepending to target */
/* Move target *contents* exactly size of (source - [END]),
* then copy source into vacataed space (source - [END]):
* [SOURCE - END, TARGET - HEADER] */
memmove(target + source_bytes - ZIPLIST_END_SIZE,
target + ZIPLIST_HEADER_SIZE,
target_bytes - ZIPLIST_HEADER_SIZE);
memcpy(target, source, source_bytes - ZIPLIST_END_SIZE);
}
/* Update header metadata. */
ZIPLIST_BYTES(target) = intrev32ifbe(zlbytes);
ZIPLIST_LENGTH(target) = intrev16ifbe(zllength);
/* New tail offset is:
* + N bytes of first ziplist
* - 1 byte for [END] of first ziplist
* + M bytes for the offset of the original tail of the second ziplist
* - J bytes for HEADER because second_offset keeps no header. */
ZIPLIST_TAIL_OFFSET(target) = intrev32ifbe(
(first_bytes - ZIPLIST_END_SIZE) +
(second_offset - ZIPLIST_HEADER_SIZE));
/* __ziplistCascadeUpdate just fixes the prev length values until it finds a
* correct prev length value (then it assumes the rest of the list is okay).
* We tell CascadeUpdate to start at the first ziplist's tail element to fix
* the merge seam. */
target = __ziplistCascadeUpdate(target, target+first_offset);
/* Now free and NULL out what we didn't realloc */
if (append) {
zfree(*second);
*second = NULL;
*first = target;
} else {
zfree(*first);
*first = NULL;
*second = target;
}
return target;
}
unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
unsigned char *p;
p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
return __ziplistInsert(zl,p,s,slen);
}
/* Returns an offset to use for iterating with ziplistNext. When the given
* index is negative, the list is traversed back to front. When the list
* doesn't contain an element at the provided index, NULL is returned. */
unsigned char *ziplistIndex(unsigned char *zl, int index) {
unsigned char *p;
unsigned int prevlensize, prevlen = 0;
if (index < 0) {
index = (-index)-1;
p = ZIPLIST_ENTRY_TAIL(zl);
if (p[0] != ZIP_END) {
ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
while (prevlen > 0 && index--) {
p -= prevlen;
ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
}
}
} else {
p = ZIPLIST_ENTRY_HEAD(zl);
while (p[0] != ZIP_END && index--) {
p += zipRawEntryLength(p);
}
}
return (p[0] == ZIP_END || index > 0) ? NULL : p;
}
/* Return pointer to next entry in ziplist.
*
* zl is the pointer to the ziplist
* p is the pointer to the current element
*
* The element after 'p' is returned, otherwise NULL if we are at the end. */
unsigned char *ziplistNext(unsigned char *zl, unsigned char *p) {
((void) zl);
/* "p" could be equal to ZIP_END, caused by ziplistDelete,
* and we should return NULL. Otherwise, we should return NULL
* when the *next* element is ZIP_END (there is no next entry). */
if (p[0] == ZIP_END) {
return NULL;
}
p += zipRawEntryLength(p);
if (p[0] == ZIP_END) {
return NULL;
}
return p;
}
/* Return pointer to previous entry in ziplist. */
unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p) {
unsigned int prevlensize, prevlen = 0;
/* Iterating backwards from ZIP_END should return the tail. When "p" is
* equal to the first element of the list, we're already at the head,
* and should return NULL. */
if (p[0] == ZIP_END) {
p = ZIPLIST_ENTRY_TAIL(zl);
return (p[0] == ZIP_END) ? NULL : p;
} else if (p == ZIPLIST_ENTRY_HEAD(zl)) {
return NULL;
} else {
ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
assert(prevlen > 0);
return p-prevlen;
}
}
/* Get entry pointed to by 'p' and store in either '*sstr' or 'sval' depending
* on the encoding of the entry. '*sstr' is always set to NULL to be able
* to find out whether the string pointer or the integer value was set.
* Return 0 if 'p' points to the end of the ziplist, 1 otherwise. */
unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) {
zlentry entry;
if (p == NULL || p[0] == ZIP_END) return 0;
if (sstr) *sstr = NULL;
zipEntry(p, &entry);
if (ZIP_IS_STR(entry.encoding)) {
if (sstr) {
*slen = entry.len;
*sstr = p+entry.headersize;
}
} else {
if (sval) {
*sval = zipLoadInteger(p+entry.headersize,entry.encoding);
}
}
return 1;
}
/* Insert an entry at "p". */
unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
return __ziplistInsert(zl,p,s,slen);
}
/* Delete a single entry from the ziplist, pointed to by *p.
* Also update *p in place, to be able to iterate over the
* ziplist, while deleting entries. */
unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
size_t offset = *p-zl;
zl = __ziplistDelete(zl,*p,1);
/* Store pointer to current element in p, because ziplistDelete will
* do a realloc which might result in a different "zl"-pointer.
* When the delete direction is back to front, we might delete the last
* entry and end up with "p" pointing to ZIP_END, so check this. */
*p = zl+offset;
return zl;
}
/* Delete a range of entries from the ziplist. */
unsigned char *ziplistDeleteRange(unsigned char *zl, int index, unsigned int num) {
unsigned char *p = ziplistIndex(zl,index);
return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
}
/* Compare entry pointer to by 'p' with 'sstr' of length 'slen'. */
/* Return 1 if equal. */
unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) {
zlentry entry;
unsigned char sencoding;
long long zval, sval;
if (p[0] == ZIP_END) return 0;
zipEntry(p, &entry);
if (ZIP_IS_STR(entry.encoding)) {
/* Raw compare */
if (entry.len == slen) {
return memcmp(p+entry.headersize,sstr,slen) == 0;
} else {
return 0;
}
} else {
/* Try to compare encoded values. Don't compare encoding because
* different implementations may encoded integers differently. */
if (zipTryEncoding(sstr,slen,&sval,&sencoding)) {
zval = zipLoadInteger(p+entry.headersize,entry.encoding);
return zval == sval;
}
}
return 0;
}
/* Find pointer to the entry equal to the specified entry. Skip 'skip' entries
* between every comparison. Returns NULL when the field could not be found. */
unsigned char *ziplistFind(unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip) {
int skipcnt = 0;
unsigned char vencoding = 0;
long long vll = 0;
while (p[0] != ZIP_END) {
unsigned int prevlensize, encoding, lensize, len;
unsigned char *q;
ZIP_DECODE_PREVLENSIZE(p, prevlensize);
ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
q = p + prevlensize + lensize;
if (skipcnt == 0) {
/* Compare current entry with specified entry */
if (ZIP_IS_STR(encoding)) {
if (len == vlen && memcmp(q, vstr, vlen) == 0) {
return p;
}
} else {
/* Find out if the searched field can be encoded. Note that
* we do it only the first time, once done vencoding is set
* to non-zero and vll is set to the integer value. */
if (vencoding == 0) {
if (!zipTryEncoding(vstr, vlen, &vll, &vencoding)) {
/* If the entry can't be encoded we set it to
* UCHAR_MAX so that we don't retry again the next
* time. */
vencoding = UCHAR_MAX;
}
/* Must be non-zero by now */
assert(vencoding);
}
/* Compare current entry with specified entry, do it only
* if vencoding != UCHAR_MAX because if there is no encoding
* possible for the field it can't be a valid integer. */
if (vencoding != UCHAR_MAX) {
long long ll = zipLoadInteger(q, encoding);
if (ll == vll) {
return p;
}
}
}
/* Reset skip count */
skipcnt = skip;
} else {
/* Skip entry */
skipcnt--;
}
/* Move to next entry */
p = q + len;
}
return NULL;
}
/* Return length of ziplist. */
unsigned int ziplistLen(unsigned char *zl) {
unsigned int len = 0;
if (intrev16ifbe(ZIPLIST_LENGTH(zl)) < UINT16_MAX) {
len = intrev16ifbe(ZIPLIST_LENGTH(zl));
} else {
unsigned char *p = zl+ZIPLIST_HEADER_SIZE;
while (*p != ZIP_END) {
p += zipRawEntryLength(p);
len++;
}
/* Re-store length if small enough */
if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = intrev16ifbe(len);
}
return len;
}
/* Return ziplist blob size in bytes. */
size_t ziplistBlobLen(unsigned char *zl) {
return intrev32ifbe(ZIPLIST_BYTES(zl));
}
void ziplistRepr(unsigned char *zl) {
unsigned char *p;
int index = 0;
zlentry entry;
printf(
"{total bytes %d} "
"{num entries %u}\n"
"{tail offset %u}\n",
intrev32ifbe(ZIPLIST_BYTES(zl)),
intrev16ifbe(ZIPLIST_LENGTH(zl)),
intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)));
p = ZIPLIST_ENTRY_HEAD(zl);
while(*p != ZIP_END) {
zipEntry(p, &entry);
printf(
"{\n"
"\taddr 0x%08lx,\n"
"\tindex %2d,\n"
"\toffset %5ld,\n"
"\thdr+entry len: %5u,\n"
"\thdr len%2u,\n"
"\tprevrawlen: %5u,\n"
"\tprevrawlensize: %2u,\n"
"\tpayload %5u\n",
(long unsigned)p,
index,
(unsigned long) (p-zl),
entry.headersize+entry.len,
entry.headersize,
entry.prevrawlen,
entry.prevrawlensize,
entry.len);
printf("\tbytes: ");
for (unsigned int i = 0; i < entry.headersize+entry.len; i++) {
printf("%02x|",p[i]);
}
printf("\n");
p += entry.headersize;
if (ZIP_IS_STR(entry.encoding)) {
printf("\t[str]");
if (entry.len > 40) {
if (fwrite(p,40,1,stdout) == 0) perror("fwrite");
printf("...");
} else {
if (entry.len &&
fwrite(p,entry.len,1,stdout) == 0) perror("fwrite");
}
} else {
printf("\t[int]%lld", (long long) zipLoadInteger(p,entry.encoding));
}
printf("\n}\n");
p += entry.len;
index++;
}
printf("{end}\n\n");
}
#ifdef REDIS_TEST
#include <sys/time.h>
#include "adlist.h"
#include "sds.h"
#define debug(f, ...) { if (DEBUG) printf(f, __VA_ARGS__); }
static unsigned char *createList() {
unsigned char *zl = ziplistNew();
zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL);
zl = ziplistPush(zl, (unsigned char*)"quux", 4, ZIPLIST_TAIL);
zl = ziplistPush(zl, (unsigned char*)"hello", 5, ZIPLIST_HEAD);
zl = ziplistPush(zl, (unsigned char*)"1024", 4, ZIPLIST_TAIL);
return zl;
}
static unsigned char *createIntList() {
unsigned char *zl = ziplistNew();
char buf[32];
sprintf(buf, "100");
zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
sprintf(buf, "128000");
zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
sprintf(buf, "-100");
zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
sprintf(buf, "4294967296");
zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
sprintf(buf, "non integer");
zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
sprintf(buf, "much much longer non integer");
zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
return zl;
}
static long long usec(void) {
struct timeval tv;
gettimeofday(&tv,NULL);
return (((long long)tv.tv_sec)*1000000)+tv.tv_usec;
}
static void stress(int pos, int num, int maxsize, int dnum) {
int i,j,k;
unsigned char *zl;
char posstr[2][5] = { "HEAD", "TAIL" };
long long start;
for (i = 0; i < maxsize; i+=dnum) {
zl = ziplistNew();
for (j = 0; j < i; j++) {
zl = ziplistPush(zl,(unsigned char*)"quux",4,ZIPLIST_TAIL);
}
/* Do num times a push+pop from pos */
start = usec();
for (k = 0; k < num; k++) {
zl = ziplistPush(zl,(unsigned char*)"quux",4,pos);
zl = ziplistDeleteRange(zl,0,1);
}
printf("List size: %8d, bytes: %8d, %dx push+pop (%s): %6lld usec\n",
i,intrev32ifbe(ZIPLIST_BYTES(zl)),num,posstr[pos],usec()-start);
zfree(zl);
}
}
static unsigned char *pop(unsigned char *zl, int where) {
unsigned char *p, *vstr;
unsigned int vlen;
long long vlong;
p = ziplistIndex(zl,where == ZIPLIST_HEAD ? 0 : -1);
if (ziplistGet(p,&vstr,&vlen,&vlong)) {
if (where == ZIPLIST_HEAD)
printf("Pop head: ");
else
printf("Pop tail: ");
if (vstr) {
if (vlen && fwrite(vstr,vlen,1,stdout) == 0) perror("fwrite");
}
else {
printf("%lld", vlong);
}
printf("\n");
return ziplistDelete(zl,&p);
} else {
printf("ERROR: Could not pop\n");
exit(1);
}
}
static int randstring(char *target, unsigned int min, unsigned int max) {
int p = 0;
int len = min+rand()%(max-min+1);
int minval, maxval;
switch(rand() % 3) {
case 0:
minval = 0;
maxval = 255;
break;
case 1:
minval = 48;
maxval = 122;
break;
case 2:
minval = 48;
maxval = 52;
break;
default:
assert(NULL);
}
while(p < len)
target[p++] = minval+rand()%(maxval-minval+1);
return len;
}
static void verify(unsigned char *zl, zlentry *e) {
int len = ziplistLen(zl);
zlentry _e;
ZIPLIST_ENTRY_ZERO(&_e);
for (int i = 0; i < len; i++) {
memset(&e[i], 0, sizeof(zlentry));
zipEntry(ziplistIndex(zl, i), &e[i]);
memset(&_e, 0, sizeof(zlentry));
zipEntry(ziplistIndex(zl, -len+i), &_e);
assert(memcmp(&e[i], &_e, sizeof(zlentry)) == 0);
}
}
int ziplistTest(int argc, char **argv) {
unsigned char *zl, *p;
unsigned char *entry;
unsigned int elen;
long long value;
/* If an argument is given, use it as the random seed. */
if (argc == 2)
srand(atoi(argv[1]));
zl = createIntList();
ziplistRepr(zl);
zfree(zl);
zl = createList();
ziplistRepr(zl);
zl = pop(zl,ZIPLIST_TAIL);
ziplistRepr(zl);
zl = pop(zl,ZIPLIST_HEAD);
ziplistRepr(zl);
zl = pop(zl,ZIPLIST_TAIL);
ziplistRepr(zl);
zl = pop(zl,ZIPLIST_TAIL);
ziplistRepr(zl);
zfree(zl);
printf("Get element at index 3:\n");
{
zl = createList();
p = ziplistIndex(zl, 3);
if (!ziplistGet(p, &entry, &elen, &value)) {
printf("ERROR: Could not access index 3\n");
return 1;
}
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
printf("\n");
} else {
printf("%lld\n", value);
}
printf("\n");
zfree(zl);
}
printf("Get element at index 4 (out of range):\n");
{
zl = createList();
p = ziplistIndex(zl, 4);
if (p == NULL) {
printf("No entry\n");
} else {
printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
return 1;
}
printf("\n");
zfree(zl);
}
printf("Get element at index -1 (last element):\n");
{
zl = createList();
p = ziplistIndex(zl, -1);
if (!ziplistGet(p, &entry, &elen, &value)) {
printf("ERROR: Could not access index -1\n");
return 1;
}
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
printf("\n");
} else {
printf("%lld\n", value);
}
printf("\n");
zfree(zl);
}
printf("Get element at index -4 (first element):\n");
{
zl = createList();
p = ziplistIndex(zl, -4);
if (!ziplistGet(p, &entry, &elen, &value)) {
printf("ERROR: Could not access index -4\n");
return 1;
}
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
printf("\n");
} else {
printf("%lld\n", value);
}
printf("\n");
zfree(zl);
}
printf("Get element at index -5 (reverse out of range):\n");
{
zl = createList();
p = ziplistIndex(zl, -5);
if (p == NULL) {
printf("No entry\n");
} else {
printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
return 1;
}
printf("\n");
zfree(zl);
}
printf("Iterate list from 0 to end:\n");
{
zl = createList();
p = ziplistIndex(zl, 0);
while (ziplistGet(p, &entry, &elen, &value)) {
printf("Entry: ");
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
} else {
printf("%lld", value);
}
p = ziplistNext(zl,p);
printf("\n");
}
printf("\n");
zfree(zl);
}
printf("Iterate list from 1 to end:\n");
{
zl = createList();
p = ziplistIndex(zl, 1);
while (ziplistGet(p, &entry, &elen, &value)) {
printf("Entry: ");
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
} else {
printf("%lld", value);
}
p = ziplistNext(zl,p);
printf("\n");
}
printf("\n");
zfree(zl);
}
printf("Iterate list from 2 to end:\n");
{
zl = createList();
p = ziplistIndex(zl, 2);
while (ziplistGet(p, &entry, &elen, &value)) {
printf("Entry: ");
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
} else {
printf("%lld", value);
}
p = ziplistNext(zl,p);
printf("\n");
}
printf("\n");
zfree(zl);
}
printf("Iterate starting out of range:\n");
{
zl = createList();
p = ziplistIndex(zl, 4);
if (!ziplistGet(p, &entry, &elen, &value)) {
printf("No entry\n");
} else {
printf("ERROR\n");
}
printf("\n");
zfree(zl);
}
printf("Iterate from back to front:\n");
{
zl = createList();
p = ziplistIndex(zl, -1);
while (ziplistGet(p, &entry, &elen, &value)) {
printf("Entry: ");
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
} else {
printf("%lld", value);
}
p = ziplistPrev(zl,p);
printf("\n");
}
printf("\n");
zfree(zl);
}
printf("Iterate from back to front, deleting all items:\n");
{
zl = createList();
p = ziplistIndex(zl, -1);
while (ziplistGet(p, &entry, &elen, &value)) {
printf("Entry: ");
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
} else {
printf("%lld", value);
}
zl = ziplistDelete(zl,&p);
p = ziplistPrev(zl,p);
printf("\n");
}
printf("\n");
zfree(zl);
}
printf("Delete inclusive range 0,0:\n");
{
zl = createList();
zl = ziplistDeleteRange(zl, 0, 1);
ziplistRepr(zl);
zfree(zl);
}
printf("Delete inclusive range 0,1:\n");
{
zl = createList();
zl = ziplistDeleteRange(zl, 0, 2);
ziplistRepr(zl);
zfree(zl);
}
printf("Delete inclusive range 1,2:\n");
{
zl = createList();
zl = ziplistDeleteRange(zl, 1, 2);
ziplistRepr(zl);
zfree(zl);
}
printf("Delete with start index out of range:\n");
{
zl = createList();
zl = ziplistDeleteRange(zl, 5, 1);
ziplistRepr(zl);
zfree(zl);
}
printf("Delete with num overflow:\n");
{
zl = createList();
zl = ziplistDeleteRange(zl, 1, 5);
ziplistRepr(zl);
zfree(zl);
}
printf("Delete foo while iterating:\n");
{
zl = createList();
p = ziplistIndex(zl,0);
while (ziplistGet(p,&entry,&elen,&value)) {
if (entry && strncmp("foo",(char*)entry,elen) == 0) {
printf("Delete foo\n");
zl = ziplistDelete(zl,&p);
} else {
printf("Entry: ");
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0)
perror("fwrite");
} else {
printf("%lld",value);
}
p = ziplistNext(zl,p);
printf("\n");
}
}
printf("\n");
ziplistRepr(zl);
zfree(zl);
}
printf("Regression test for >255 byte strings:\n");
{
char v1[257] = {0}, v2[257] = {0};
memset(v1,'x',256);
memset(v2,'y',256);
zl = ziplistNew();
zl = ziplistPush(zl,(unsigned char*)v1,strlen(v1),ZIPLIST_TAIL);
zl = ziplistPush(zl,(unsigned char*)v2,strlen(v2),ZIPLIST_TAIL);
/* Pop values again and compare their value. */
p = ziplistIndex(zl,0);
assert(ziplistGet(p,&entry,&elen,&value));
assert(strncmp(v1,(char*)entry,elen) == 0);
p = ziplistIndex(zl,1);
assert(ziplistGet(p,&entry,&elen,&value));
assert(strncmp(v2,(char*)entry,elen) == 0);
printf("SUCCESS\n\n");
zfree(zl);
}
printf("Regression test deleting next to last entries:\n");
{
char v[3][257] = {{0}};
zlentry e[3] = {{.prevrawlensize = 0, .prevrawlen = 0, .lensize = 0,
.len = 0, .headersize = 0, .encoding = 0, .p = NULL}};
size_t i;
for (i = 0; i < (sizeof(v)/sizeof(v[0])); i++) {
memset(v[i], 'a' + i, sizeof(v[0]));
}
v[0][256] = '\0';
v[1][ 1] = '\0';
v[2][256] = '\0';
zl = ziplistNew();
for (i = 0; i < (sizeof(v)/sizeof(v[0])); i++) {
zl = ziplistPush(zl, (unsigned char *) v[i], strlen(v[i]), ZIPLIST_TAIL);
}
verify(zl, e);
assert(e[0].prevrawlensize == 1);
assert(e[1].prevrawlensize == 5);
assert(e[2].prevrawlensize == 1);
/* Deleting entry 1 will increase `prevrawlensize` for entry 2 */
unsigned char *p = e[1].p;
zl = ziplistDelete(zl, &p);
verify(zl, e);
assert(e[0].prevrawlensize == 1);
assert(e[1].prevrawlensize == 5);
printf("SUCCESS\n\n");
zfree(zl);
}
printf("Create long list and check indices:\n");
{
zl = ziplistNew();
char buf[32];
int i,len;
for (i = 0; i < 1000; i++) {
len = sprintf(buf,"%d",i);
zl = ziplistPush(zl,(unsigned char*)buf,len,ZIPLIST_TAIL);
}
for (i = 0; i < 1000; i++) {
p = ziplistIndex(zl,i);
assert(ziplistGet(p,NULL,NULL,&value));
assert(i == value);
p = ziplistIndex(zl,-i-1);
assert(ziplistGet(p,NULL,NULL,&value));
assert(999-i == value);
}
printf("SUCCESS\n\n");
zfree(zl);
}
printf("Compare strings with ziplist entries:\n");
{
zl = createList();
p = ziplistIndex(zl,0);
if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
printf("ERROR: not \"hello\"\n");
return 1;
}
if (ziplistCompare(p,(unsigned char*)"hella",5)) {
printf("ERROR: \"hella\"\n");
return 1;
}
p = ziplistIndex(zl,3);
if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
printf("ERROR: not \"1024\"\n");
return 1;
}
if (ziplistCompare(p,(unsigned char*)"1025",4)) {
printf("ERROR: \"1025\"\n");
return 1;
}
printf("SUCCESS\n\n");
zfree(zl);
}
printf("Merge test:\n");
{
/* create list gives us: [hello, foo, quux, 1024] */
zl = createList();
unsigned char *zl2 = createList();
unsigned char *zl3 = ziplistNew();
unsigned char *zl4 = ziplistNew();
if (ziplistMerge(&zl4, &zl4)) {
printf("ERROR: Allowed merging of one ziplist into itself.\n");
return 1;
}
/* Merge two empty ziplists, get empty result back. */
zl4 = ziplistMerge(&zl3, &zl4);
ziplistRepr(zl4);
if (ziplistLen(zl4)) {
printf("ERROR: Merging two empty ziplists created entries.\n");
return 1;
}
zfree(zl4);
zl2 = ziplistMerge(&zl, &zl2);
/* merge gives us: [hello, foo, quux, 1024, hello, foo, quux, 1024] */
ziplistRepr(zl2);
if (ziplistLen(zl2) != 8) {
printf("ERROR: Merged length not 8, but: %u\n", ziplistLen(zl2));
return 1;
}
p = ziplistIndex(zl2,0);
if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
printf("ERROR: not \"hello\"\n");
return 1;
}
if (ziplistCompare(p,(unsigned char*)"hella",5)) {
printf("ERROR: \"hella\"\n");
return 1;
}
p = ziplistIndex(zl2,3);
if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
printf("ERROR: not \"1024\"\n");
return 1;
}
if (ziplistCompare(p,(unsigned char*)"1025",4)) {
printf("ERROR: \"1025\"\n");
return 1;
}
p = ziplistIndex(zl2,4);
if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
printf("ERROR: not \"hello\"\n");
return 1;
}
if (ziplistCompare(p,(unsigned char*)"hella",5)) {
printf("ERROR: \"hella\"\n");
return 1;
}
p = ziplistIndex(zl2,7);
if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
printf("ERROR: not \"1024\"\n");
return 1;
}
if (ziplistCompare(p,(unsigned char*)"1025",4)) {
printf("ERROR: \"1025\"\n");
return 1;
}
printf("SUCCESS\n\n");
zfree(zl);
}
printf("Stress with random payloads of different encoding:\n");
{
int i,j,len,where;
unsigned char *p;
char buf[1024];
int buflen;
list *ref;
listNode *refnode;
/* Hold temp vars from ziplist */
unsigned char *sstr;
unsigned int slen;
long long sval;
for (i = 0; i < 20000; i++) {
zl = ziplistNew();
ref = listCreate();
listSetFreeMethod(ref,(void (*)(void*))sdsfree);
len = rand() % 256;
/* Create lists */
for (j = 0; j < len; j++) {
where = (rand() & 1) ? ZIPLIST_HEAD : ZIPLIST_TAIL;
if (rand() % 2) {
buflen = randstring(buf,1,sizeof(buf)-1);
} else {
switch(rand() % 3) {
case 0:
buflen = sprintf(buf,"%lld",(0LL + rand()) >> 20);
break;
case 1:
buflen = sprintf(buf,"%lld",(0LL + rand()));
break;
case 2:
buflen = sprintf(buf,"%lld",(0LL + rand()) << 20);
break;
default:
assert(NULL);
}
}
/* Add to ziplist */
zl = ziplistPush(zl, (unsigned char*)buf, buflen, where);
/* Add to reference list */
if (where == ZIPLIST_HEAD) {
listAddNodeHead(ref,sdsnewlen(buf, buflen));
} else if (where == ZIPLIST_TAIL) {
listAddNodeTail(ref,sdsnewlen(buf, buflen));
} else {
assert(NULL);
}
}
assert(listLength(ref) == ziplistLen(zl));
for (j = 0; j < len; j++) {
/* Naive way to get elements, but similar to the stresser
* executed from the Tcl test suite. */
p = ziplistIndex(zl,j);
refnode = listIndex(ref,j);
assert(ziplistGet(p,&sstr,&slen,&sval));
if (sstr == NULL) {
buflen = sprintf(buf,"%lld",sval);
} else {
buflen = slen;
memcpy(buf,sstr,buflen);
buf[buflen] = '\0';
}
assert(memcmp(buf,listNodeValue(refnode),buflen) == 0);
}
zfree(zl);
listRelease(ref);
}
printf("SUCCESS\n\n");
}
printf("Stress with variable ziplist size:\n");
{
stress(ZIPLIST_HEAD,100000,16384,256);
stress(ZIPLIST_TAIL,100000,16384,256);
}
return 0;
}
#endif