/* Extracted from anet.c to work properly with Hiredis error reporting. * * Copyright (c) 2009-2011, Salvatore Sanfilippo * Copyright (c) 2010-2014, Pieter Noordhuis * Copyright (c) 2015, Matt Stancliff , * Jan-Erik Rediger * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Redis nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "fmacros.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "net.h" #include "sds.h" /* Defined in hiredis.c */ void __redisSetError(redisContext *c, int type, const char *str); static void redisContextCloseFd(redisContext *c) { if (c && c->fd >= 0) { close(c->fd); c->fd = -1; } } static void __redisSetErrorFromErrno(redisContext *c, int type, const char *prefix) { int errorno = errno; /* snprintf() may change errno */ char buf[128] = { 0 }; size_t len = 0; if (prefix != NULL) len = snprintf(buf,sizeof(buf),"%s: ",prefix); __redis_strerror_r(errorno, (char *)(buf + len), sizeof(buf) - len); __redisSetError(c,type,buf); } static int redisSetReuseAddr(redisContext *c) { int on = 1; if (setsockopt(c->fd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)) == -1) { __redisSetErrorFromErrno(c,REDIS_ERR_IO,NULL); redisContextCloseFd(c); return REDIS_ERR; } return REDIS_OK; } static int redisCreateSocket(redisContext *c, int type) { int s; if ((s = socket(type, SOCK_STREAM, 0)) == -1) { __redisSetErrorFromErrno(c,REDIS_ERR_IO,NULL); return REDIS_ERR; } c->fd = s; if (type == AF_INET) { if (redisSetReuseAddr(c) == REDIS_ERR) { return REDIS_ERR; } } return REDIS_OK; } static int redisSetBlocking(redisContext *c, int blocking) { int flags; /* Set the socket nonblocking. * Note that fcntl(2) for F_GETFL and F_SETFL can't be * interrupted by a signal. */ if ((flags = fcntl(c->fd, F_GETFL)) == -1) { __redisSetErrorFromErrno(c,REDIS_ERR_IO,"fcntl(F_GETFL)"); redisContextCloseFd(c); return REDIS_ERR; } if (blocking) flags &= ~O_NONBLOCK; else flags |= O_NONBLOCK; if (fcntl(c->fd, F_SETFL, flags) == -1) { __redisSetErrorFromErrno(c,REDIS_ERR_IO,"fcntl(F_SETFL)"); redisContextCloseFd(c); return REDIS_ERR; } return REDIS_OK; } int redisKeepAlive(redisContext *c, int interval) { int val = 1; int fd = c->fd; if (setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, &val, sizeof(val)) == -1){ __redisSetError(c,REDIS_ERR_OTHER,strerror(errno)); return REDIS_ERR; } val = interval; #ifdef _OSX if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPALIVE, &val, sizeof(val)) < 0) { __redisSetError(c,REDIS_ERR_OTHER,strerror(errno)); return REDIS_ERR; } #else #if defined(__GLIBC__) && !defined(__FreeBSD_kernel__) val = interval; if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, &val, sizeof(val)) < 0) { __redisSetError(c,REDIS_ERR_OTHER,strerror(errno)); return REDIS_ERR; } val = interval/3; if (val == 0) val = 1; if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPINTVL, &val, sizeof(val)) < 0) { __redisSetError(c,REDIS_ERR_OTHER,strerror(errno)); return REDIS_ERR; } val = 3; if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPCNT, &val, sizeof(val)) < 0) { __redisSetError(c,REDIS_ERR_OTHER,strerror(errno)); return REDIS_ERR; } #endif #endif return REDIS_OK; } static int redisSetTcpNoDelay(redisContext *c) { int yes = 1; if (setsockopt(c->fd, IPPROTO_TCP, TCP_NODELAY, &yes, sizeof(yes)) == -1) { __redisSetErrorFromErrno(c,REDIS_ERR_IO,"setsockopt(TCP_NODELAY)"); redisContextCloseFd(c); return REDIS_ERR; } return REDIS_OK; } #define __MAX_MSEC (((LONG_MAX) - 999) / 1000) static int redisContextTimeoutMsec(redisContext *c, long *result) { const struct timeval *timeout = c->timeout; long msec = -1; /* Only use timeout when not NULL. */ if (timeout != NULL) { if (timeout->tv_usec > 1000000 || timeout->tv_sec > __MAX_MSEC) { *result = msec; return REDIS_ERR; } msec = (timeout->tv_sec * 1000) + ((timeout->tv_usec + 999) / 1000); if (msec < 0 || msec > INT_MAX) { msec = INT_MAX; } } *result = msec; return REDIS_OK; } static int redisContextWaitReady(redisContext *c, long msec) { struct pollfd wfd[1]; wfd[0].fd = c->fd; wfd[0].events = POLLOUT; if (errno == EINPROGRESS) { int res; if ((res = poll(wfd, 1, msec)) == -1) { __redisSetErrorFromErrno(c, REDIS_ERR_IO, "poll(2)"); redisContextCloseFd(c); return REDIS_ERR; } else if (res == 0) { errno = ETIMEDOUT; __redisSetErrorFromErrno(c,REDIS_ERR_IO,NULL); redisContextCloseFd(c); return REDIS_ERR; } if (redisCheckSocketError(c) != REDIS_OK) return REDIS_ERR; return REDIS_OK; } __redisSetErrorFromErrno(c,REDIS_ERR_IO,NULL); redisContextCloseFd(c); return REDIS_ERR; } int redisCheckSocketError(redisContext *c) { int err = 0; socklen_t errlen = sizeof(err); if (getsockopt(c->fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) { __redisSetErrorFromErrno(c,REDIS_ERR_IO,"getsockopt(SO_ERROR)"); return REDIS_ERR; } if (err) { errno = err; __redisSetErrorFromErrno(c,REDIS_ERR_IO,NULL); return REDIS_ERR; } return REDIS_OK; } int redisContextSetTimeout(redisContext *c, const struct timeval tv) { if (setsockopt(c->fd,SOL_SOCKET,SO_RCVTIMEO,&tv,sizeof(tv)) == -1) { __redisSetErrorFromErrno(c,REDIS_ERR_IO,"setsockopt(SO_RCVTIMEO)"); return REDIS_ERR; } if (setsockopt(c->fd,SOL_SOCKET,SO_SNDTIMEO,&tv,sizeof(tv)) == -1) { __redisSetErrorFromErrno(c,REDIS_ERR_IO,"setsockopt(SO_SNDTIMEO)"); return REDIS_ERR; } return REDIS_OK; } static int _redisContextConnectTcp(redisContext *c, const char *addr, int port, const struct timeval *timeout, const char *source_addr) { int s, rv, n; char _port[6]; /* strlen("65535"); */ struct addrinfo hints, *servinfo, *bservinfo, *p, *b; int blocking = (c->flags & REDIS_BLOCK); int reuseaddr = (c->flags & REDIS_REUSEADDR); int reuses = 0; long timeout_msec = -1; servinfo = NULL; c->connection_type = REDIS_CONN_TCP; c->tcp.port = port; /* We need to take possession of the passed parameters * to make them reusable for a reconnect. * We also carefully check we don't free data we already own, * as in the case of the reconnect method. * * This is a bit ugly, but atleast it works and doesn't leak memory. **/ if (c->tcp.host != addr) { if (c->tcp.host) free(c->tcp.host); c->tcp.host = strdup(addr); } if (timeout) { if (c->timeout != timeout) { if (c->timeout == NULL) c->timeout = malloc(sizeof(struct timeval)); memcpy(c->timeout, timeout, sizeof(struct timeval)); } } else { if (c->timeout) free(c->timeout); c->timeout = NULL; } if (redisContextTimeoutMsec(c, &timeout_msec) != REDIS_OK) { __redisSetError(c, REDIS_ERR_IO, "Invalid timeout specified"); goto error; } if (source_addr == NULL) { free(c->tcp.source_addr); c->tcp.source_addr = NULL; } else if (c->tcp.source_addr != source_addr) { free(c->tcp.source_addr); c->tcp.source_addr = strdup(source_addr); } snprintf(_port, 6, "%d", port); memset(&hints,0,sizeof(hints)); hints.ai_family = AF_INET; hints.ai_socktype = SOCK_STREAM; /* Try with IPv6 if no IPv4 address was found. We do it in this order since * in a Redis client you can't afford to test if you have IPv6 connectivity * as this would add latency to every connect. Otherwise a more sensible * route could be: Use IPv6 if both addresses are available and there is IPv6 * connectivity. */ if ((rv = getaddrinfo(c->tcp.host,_port,&hints,&servinfo)) != 0) { hints.ai_family = AF_INET6; if ((rv = getaddrinfo(addr,_port,&hints,&servinfo)) != 0) { __redisSetError(c,REDIS_ERR_OTHER,gai_strerror(rv)); return REDIS_ERR; } } for (p = servinfo; p != NULL; p = p->ai_next) { addrretry: if ((s = socket(p->ai_family,p->ai_socktype,p->ai_protocol)) == -1) continue; c->fd = s; if (redisSetBlocking(c,0) != REDIS_OK) goto error; if (c->tcp.source_addr) { int bound = 0; /* Using getaddrinfo saves us from self-determining IPv4 vs IPv6 */ if ((rv = getaddrinfo(c->tcp.source_addr, NULL, &hints, &bservinfo)) != 0) { char buf[128]; snprintf(buf,sizeof(buf),"Can't get addr: %s",gai_strerror(rv)); __redisSetError(c,REDIS_ERR_OTHER,buf); goto error; } if (reuseaddr) { n = 1; if (setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char*) &n, sizeof(n)) < 0) { freeaddrinfo(bservinfo); goto error; } } for (b = bservinfo; b != NULL; b = b->ai_next) { if (bind(s,b->ai_addr,b->ai_addrlen) != -1) { bound = 1; break; } } freeaddrinfo(bservinfo); if (!bound) { char buf[128]; snprintf(buf,sizeof(buf),"Can't bind socket: %s",strerror(errno)); __redisSetError(c,REDIS_ERR_OTHER,buf); goto error; } } if (connect(s,p->ai_addr,p->ai_addrlen) == -1) { if (errno == EHOSTUNREACH) { redisContextCloseFd(c); continue; } else if (errno == EINPROGRESS && !blocking) { /* This is ok. */ } else if (errno == EADDRNOTAVAIL && reuseaddr) { if (++reuses >= REDIS_CONNECT_RETRIES) { goto error; } else { redisContextCloseFd(c); goto addrretry; } } else { if (redisContextWaitReady(c,timeout_msec) != REDIS_OK) goto error; } } if (blocking && redisSetBlocking(c,1) != REDIS_OK) goto error; if (redisSetTcpNoDelay(c) != REDIS_OK) goto error; c->flags |= REDIS_CONNECTED; rv = REDIS_OK; goto end; } if (p == NULL) { char buf[128]; snprintf(buf,sizeof(buf),"Can't create socket: %s",strerror(errno)); __redisSetError(c,REDIS_ERR_OTHER,buf); goto error; } error: rv = REDIS_ERR; end: freeaddrinfo(servinfo); return rv; // Need to return REDIS_OK if alright } int redisContextConnectTcp(redisContext *c, const char *addr, int port, const struct timeval *timeout) { return _redisContextConnectTcp(c, addr, port, timeout, NULL); } int redisContextConnectBindTcp(redisContext *c, const char *addr, int port, const struct timeval *timeout, const char *source_addr) { return _redisContextConnectTcp(c, addr, port, timeout, source_addr); } int redisContextConnectUnix(redisContext *c, const char *path, const struct timeval *timeout) { int blocking = (c->flags & REDIS_BLOCK); struct sockaddr_un sa; long timeout_msec = -1; if (redisCreateSocket(c,AF_LOCAL) < 0) return REDIS_ERR; if (redisSetBlocking(c,0) != REDIS_OK) return REDIS_ERR; c->connection_type = REDIS_CONN_UNIX; if (c->unix_sock.path != path) c->unix_sock.path = strdup(path); if (timeout) { if (c->timeout != timeout) { if (c->timeout == NULL) c->timeout = malloc(sizeof(struct timeval)); memcpy(c->timeout, timeout, sizeof(struct timeval)); } } else { if (c->timeout) free(c->timeout); c->timeout = NULL; } if (redisContextTimeoutMsec(c,&timeout_msec) != REDIS_OK) return REDIS_ERR; sa.sun_family = AF_LOCAL; strncpy(sa.sun_path,path,sizeof(sa.sun_path)-1); if (connect(c->fd, (struct sockaddr*)&sa, sizeof(sa)) == -1) { if (errno == EINPROGRESS && !blocking) { /* This is ok. */ } else { if (redisContextWaitReady(c,timeout_msec) != REDIS_OK) return REDIS_ERR; } } /* Reset socket to be blocking after connect(2). */ if (blocking && redisSetBlocking(c,1) != REDIS_OK) return REDIS_ERR; c->flags |= REDIS_CONNECTED; return REDIS_OK; }