flink_book/调优/flinkSql.md
2023-01-28 23:57:34 +08:00

4.4 KiB
Raw Blame History

设置空闲状态保留时间

不设置空闲状态保留时间会导致状态爆炸。

  • FlinkSQL 的 regular join inner 、 left 、 right ),左右表的数据都会一直保存在状态里,不会清理!要么设置 TTL ,要么使用 Flink SQL 的 interval join 。
  • 使用 Top N 语法进行去重,重复数据的出现一般都位于特定区间内(例如一小时或一天内),过了这段时间之后,对应的 状态就不再需要了。

Flink SQL可以指定空闲状态即未更新的状态被保留的最小时间 当状态中某个 key对应的 状态未更新的时间达到阈值时, 该条状态被自动清理。

API 设置:

tableEnv.getConfig().setIdleStateRetention(Duration.ofHours(1));

配置参数设置:

Configuration configuration = tableEnv.getConfig().getConfiguration();
configuration.setString("table.exec.state.ttl", " 1 h" );

开启MiniBatch

MiniBatch是微批处理原理是 缓存一定的数据后再触发处理,以减少对 State 的访问从而提升吞吐并减少数据的输出量。MiniBatch主要依靠在每个Task上注册的Timer线程来触发微批需要消耗一定的线程调度性能。

开启方式

MiniBatch 默认关闭,开启方式如下:

Configuration configuration = tEnv.getConfig().getConfiguration();
configuration.setString(" table.exec.mini batch.enabled ", true);
configuration.setString(" table.exec.mini batch.allow latency ", 5 s);
configuration.setString(" table.exec.mini batch.size ", 20000);

  • table.exec.mini batch.enabled: 开启 miniBatch的参数。
  • table.exec.mini batch.allow latency 批量输出的间隔时间。
  • table.exec.mini batch.size 防止 OOM 设置每个批次最多缓存数据的条数 可以设为2 万条。

注意:

  • 目前上述样例中的key value 配置项仅被 Blink planner支持。
  • 1.12 之前的版本有 bug ,开启 miniBatch ,不会清理过期状态,也就是说如果设置状态的 TTL ,无法清理过期状态。 1.12 版本才修复这个问题 。

参考ISSUEhttps://issues.apache.org/jira/browse/FLINK_17096

适用场景

微批处理通过增加延迟换取高吞吐,如果有超低延迟的要求,不建议开启微批处理。通常对于聚合的场景,微批处理可以显 著的提升系统性能,建议开启。

开启 LocalGlobal

原理介绍

LocalGlobal优化将原先的 Aggregate 分成 Local+Global 两阶段聚合即MapReduce 模型中的 Combine+Reduce 处理模式。第一阶段在上游节点本地攒一批数据进行聚合( localAgg ),并输出这次微批的增量值 A ccumulator )。第 二阶段再将收到的 Accumulator 合并( Merge ),得到最终的结果 GlobalAgg )。

LocalGlobal本质上能够靠 LocalAgg 的聚合筛除部分倾斜数据,从而降低 GlobalAgg的热点提升性能。结合下图理解 LocalGlobal 如何解决数据倾斜的问题。

pic

  • 未开启 LocalGlobal 优化,由于流中的数据倾斜, Key 为红色的聚合算子实例需要处理更多的记录,这就导致了热点问题。
  • 开启 LocalGlobal 优化后,先进行本地聚合,再进行全局聚合。可大大减少 GlobalAgg的热点提高性能。

开启方式

  • LocalGlobal 优化需要先开启 MiniBatch ,依赖于 MiniBatch 的参数。
  • table.optimizer.agg phase strategy : 聚合策略。默认 AUTO ,支持参数 AUTO 、TWO_PHASE( 使用 LocalGlobal 两阶 段聚合 、 ONE_PHASE( 仅使用 Global 一阶段聚合)。
// 初始化运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
TableEnvironment tEnv = StreamTableEnvironment.create(env);
Configuration configuration = tEnv.getConfig().getConfiguration();
// 开启 miniBatch
configuration.setString("table.exec.mini-batch.enabled ", true);
// 批量输出的间隔时间
configuration.setString("table.exec.mini-batch.allow latency ", "5s");
// 防止 OOM 设置每个批次最多缓存数据的条数 ,可以设为 2 万条
configuration.setString("table.exec.mini-batch.size ", "20000");
// 开启 LocalGlobal
config uration.setString("table.optimizer.agg-phase-strategy", "TWO_PHASE");
    1. 需要先开启 MiniBatch。
    1. 开启 LocalGlobal 需要 UDAF 实现 Merge 方法 。

开启Split Distinct