292 lines
9.0 KiB
Python
292 lines
9.0 KiB
Python
|
# -*-coding:utf-8 -*-
|
|||
|
import matplotlib.pyplot as plt
|
|||
|
import numpy as np
|
|||
|
import random
|
|||
|
|
|||
|
"""
|
|||
|
Author:
|
|||
|
Jack Cui
|
|||
|
Blog:
|
|||
|
http://blog.csdn.net/c406495762
|
|||
|
Zhihu:
|
|||
|
https://www.zhihu.com/people/Jack--Cui/
|
|||
|
Modify:
|
|||
|
2017-10-03
|
|||
|
"""
|
|||
|
|
|||
|
class optStruct:
|
|||
|
"""
|
|||
|
数据结构,维护所有需要操作的值
|
|||
|
Parameters:
|
|||
|
dataMatIn - 数据矩阵
|
|||
|
classLabels - 数据标签
|
|||
|
C - 松弛变量
|
|||
|
toler - 容错率
|
|||
|
"""
|
|||
|
def __init__(self, dataMatIn, classLabels, C, toler):
|
|||
|
self.X = dataMatIn #数据矩阵
|
|||
|
self.labelMat = classLabels #数据标签
|
|||
|
self.C = C #松弛变量
|
|||
|
self.tol = toler #容错率
|
|||
|
self.m = np.shape(dataMatIn)[0] #数据矩阵行数
|
|||
|
self.alphas = np.mat(np.zeros((self.m,1))) #根据矩阵行数初始化alpha参数为0
|
|||
|
self.b = 0 #初始化b参数为0
|
|||
|
self.eCache = np.mat(np.zeros((self.m,2))) #根据矩阵行数初始化虎误差缓存,第一列为是否有效的标志位,第二列为实际的误差E的值。
|
|||
|
|
|||
|
def loadDataSet(fileName):
|
|||
|
"""
|
|||
|
读取数据
|
|||
|
Parameters:
|
|||
|
fileName - 文件名
|
|||
|
Returns:
|
|||
|
dataMat - 数据矩阵
|
|||
|
labelMat - 数据标签
|
|||
|
"""
|
|||
|
dataMat = []; labelMat = []
|
|||
|
fr = open(fileName)
|
|||
|
for line in fr.readlines(): #逐行读取,滤除空格等
|
|||
|
lineArr = line.strip().split('\t')
|
|||
|
dataMat.append([float(lineArr[0]), float(lineArr[1])]) #添加数据
|
|||
|
labelMat.append(float(lineArr[2])) #添加标签
|
|||
|
return dataMat,labelMat
|
|||
|
|
|||
|
def calcEk(oS, k):
|
|||
|
"""
|
|||
|
计算误差
|
|||
|
Parameters:
|
|||
|
oS - 数据结构
|
|||
|
k - 标号为k的数据
|
|||
|
Returns:
|
|||
|
Ek - 标号为k的数据误差
|
|||
|
"""
|
|||
|
fXk = float(np.multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T) + oS.b)
|
|||
|
Ek = fXk - float(oS.labelMat[k])
|
|||
|
return Ek
|
|||
|
|
|||
|
def selectJrand(i, m):
|
|||
|
"""
|
|||
|
函数说明:随机选择alpha_j的索引值
|
|||
|
|
|||
|
Parameters:
|
|||
|
i - alpha_i的索引值
|
|||
|
m - alpha参数个数
|
|||
|
Returns:
|
|||
|
j - alpha_j的索引值
|
|||
|
"""
|
|||
|
j = i #选择一个不等于i的j
|
|||
|
while (j == i):
|
|||
|
j = int(random.uniform(0, m))
|
|||
|
return j
|
|||
|
|
|||
|
def selectJ(i, oS, Ei):
|
|||
|
"""
|
|||
|
内循环启发方式2
|
|||
|
Parameters:
|
|||
|
i - 标号为i的数据的索引值
|
|||
|
oS - 数据结构
|
|||
|
Ei - 标号为i的数据误差
|
|||
|
Returns:
|
|||
|
j, maxK - 标号为j或maxK的数据的索引值
|
|||
|
Ej - 标号为j的数据误差
|
|||
|
"""
|
|||
|
maxK = -1; maxDeltaE = 0; Ej = 0 #初始化
|
|||
|
oS.eCache[i] = [1,Ei] #根据Ei更新误差缓存
|
|||
|
validEcacheList = np.nonzero(oS.eCache[:,0].A)[0] #返回误差不为0的数据的索引值
|
|||
|
if (len(validEcacheList)) > 1: #有不为0的误差
|
|||
|
for k in validEcacheList: #遍历,找到最大的Ek
|
|||
|
if k == i: continue #不计算i,浪费时间
|
|||
|
Ek = calcEk(oS, k) #计算Ek
|
|||
|
deltaE = abs(Ei - Ek) #计算|Ei-Ek|
|
|||
|
if (deltaE > maxDeltaE): #找到maxDeltaE
|
|||
|
maxK = k; maxDeltaE = deltaE; Ej = Ek
|
|||
|
return maxK, Ej #返回maxK,Ej
|
|||
|
else: #没有不为0的误差
|
|||
|
j = selectJrand(i, oS.m) #随机选择alpha_j的索引值
|
|||
|
Ej = calcEk(oS, j) #计算Ej
|
|||
|
return j, Ej #j,Ej
|
|||
|
|
|||
|
def updateEk(oS, k):
|
|||
|
"""
|
|||
|
计算Ek,并更新误差缓存
|
|||
|
Parameters:
|
|||
|
oS - 数据结构
|
|||
|
k - 标号为k的数据的索引值
|
|||
|
Returns:
|
|||
|
无
|
|||
|
"""
|
|||
|
Ek = calcEk(oS, k) #计算Ek
|
|||
|
oS.eCache[k] = [1,Ek] #更新误差缓存
|
|||
|
|
|||
|
|
|||
|
def clipAlpha(aj,H,L):
|
|||
|
"""
|
|||
|
修剪alpha_j
|
|||
|
Parameters:
|
|||
|
aj - alpha_j的值
|
|||
|
H - alpha上限
|
|||
|
L - alpha下限
|
|||
|
Returns:
|
|||
|
aj - 修剪后的alpah_j的值
|
|||
|
"""
|
|||
|
if aj > H:
|
|||
|
aj = H
|
|||
|
if L > aj:
|
|||
|
aj = L
|
|||
|
return aj
|
|||
|
|
|||
|
def innerL(i, oS):
|
|||
|
"""
|
|||
|
优化的SMO算法
|
|||
|
Parameters:
|
|||
|
i - 标号为i的数据的索引值
|
|||
|
oS - 数据结构
|
|||
|
Returns:
|
|||
|
1 - 有任意一对alpha值发生变化
|
|||
|
0 - 没有任意一对alpha值发生变化或变化太小
|
|||
|
"""
|
|||
|
#步骤1:计算误差Ei
|
|||
|
Ei = calcEk(oS, i)
|
|||
|
#优化alpha,设定一定的容错率。
|
|||
|
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
|
|||
|
#使用内循环启发方式2选择alpha_j,并计算Ej
|
|||
|
j,Ej = selectJ(i, oS, Ei)
|
|||
|
#保存更新前的aplpha值,使用深拷贝
|
|||
|
alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
|
|||
|
#步骤2:计算上下界L和H
|
|||
|
if (oS.labelMat[i] != oS.labelMat[j]):
|
|||
|
L = max(0, oS.alphas[j] - oS.alphas[i])
|
|||
|
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
|
|||
|
else:
|
|||
|
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
|
|||
|
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
|
|||
|
if L == H:
|
|||
|
print("L==H")
|
|||
|
return 0
|
|||
|
#步骤3:计算eta
|
|||
|
eta = 2.0 * oS.X[i,:] * oS.X[j,:].T - oS.X[i,:] * oS.X[i,:].T - oS.X[j,:] * oS.X[j,:].T
|
|||
|
if eta >= 0:
|
|||
|
print("eta>=0")
|
|||
|
return 0
|
|||
|
#步骤4:更新alpha_j
|
|||
|
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej)/eta
|
|||
|
#步骤5:修剪alpha_j
|
|||
|
oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
|
|||
|
#更新Ej至误差缓存
|
|||
|
updateEk(oS, j)
|
|||
|
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
|
|||
|
print("alpha_j变化太小")
|
|||
|
return 0
|
|||
|
#步骤6:更新alpha_i
|
|||
|
oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
|
|||
|
#更新Ei至误差缓存
|
|||
|
updateEk(oS, i)
|
|||
|
#步骤7:更新b_1和b_2
|
|||
|
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T
|
|||
|
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T
|
|||
|
#步骤8:根据b_1和b_2更新b
|
|||
|
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
|
|||
|
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
|
|||
|
else: oS.b = (b1 + b2)/2.0
|
|||
|
return 1
|
|||
|
else:
|
|||
|
return 0
|
|||
|
|
|||
|
def smoP(dataMatIn, classLabels, C, toler, maxIter):
|
|||
|
"""
|
|||
|
完整的线性SMO算法
|
|||
|
Parameters:
|
|||
|
dataMatIn - 数据矩阵
|
|||
|
classLabels - 数据标签
|
|||
|
C - 松弛变量
|
|||
|
toler - 容错率
|
|||
|
maxIter - 最大迭代次数
|
|||
|
Returns:
|
|||
|
oS.b - SMO算法计算的b
|
|||
|
oS.alphas - SMO算法计算的alphas
|
|||
|
"""
|
|||
|
oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler) #初始化数据结构
|
|||
|
iter = 0 #初始化当前迭代次数
|
|||
|
entireSet = True; alphaPairsChanged = 0
|
|||
|
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): #遍历整个数据集都alpha也没有更新或者超过最大迭代次数,则退出循环
|
|||
|
alphaPairsChanged = 0
|
|||
|
if entireSet: #遍历整个数据集
|
|||
|
for i in range(oS.m):
|
|||
|
alphaPairsChanged += innerL(i,oS) #使用优化的SMO算法
|
|||
|
print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
|
|||
|
iter += 1
|
|||
|
else: #遍历非边界值
|
|||
|
nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] #遍历不在边界0和C的alpha
|
|||
|
for i in nonBoundIs:
|
|||
|
alphaPairsChanged += innerL(i,oS)
|
|||
|
print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
|
|||
|
iter += 1
|
|||
|
if entireSet: #遍历一次后改为非边界遍历
|
|||
|
entireSet = False
|
|||
|
elif (alphaPairsChanged == 0): #如果alpha没有更新,计算全样本遍历
|
|||
|
entireSet = True
|
|||
|
print("迭代次数: %d" % iter)
|
|||
|
return oS.b,oS.alphas #返回SMO算法计算的b和alphas
|
|||
|
|
|||
|
|
|||
|
def showClassifer(dataMat, classLabels, w, b):
|
|||
|
"""
|
|||
|
分类结果可视化
|
|||
|
Parameters:
|
|||
|
dataMat - 数据矩阵
|
|||
|
w - 直线法向量
|
|||
|
b - 直线解决
|
|||
|
Returns:
|
|||
|
无
|
|||
|
"""
|
|||
|
#绘制样本点
|
|||
|
data_plus = [] #正样本
|
|||
|
data_minus = [] #负样本
|
|||
|
for i in range(len(dataMat)):
|
|||
|
if classLabels[i] > 0:
|
|||
|
data_plus.append(dataMat[i])
|
|||
|
else:
|
|||
|
data_minus.append(dataMat[i])
|
|||
|
data_plus_np = np.array(data_plus) #转换为numpy矩阵
|
|||
|
data_minus_np = np.array(data_minus) #转换为numpy矩阵
|
|||
|
plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1], s=30, alpha=0.7) #正样本散点图
|
|||
|
plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1], s=30, alpha=0.7) #负样本散点图
|
|||
|
#绘制直线
|
|||
|
x1 = max(dataMat)[0]
|
|||
|
x2 = min(dataMat)[0]
|
|||
|
a1, a2 = w
|
|||
|
b = float(b)
|
|||
|
a1 = float(a1[0])
|
|||
|
a2 = float(a2[0])
|
|||
|
y1, y2 = (-b- a1*x1)/a2, (-b - a1*x2)/a2
|
|||
|
plt.plot([x1, x2], [y1, y2])
|
|||
|
#找出支持向量点
|
|||
|
for i, alpha in enumerate(alphas):
|
|||
|
if alpha > 0:
|
|||
|
x, y = dataMat[i]
|
|||
|
plt.scatter([x], [y], s=150, c='none', alpha=0.7, linewidth=1.5, edgecolor='red')
|
|||
|
plt.show()
|
|||
|
|
|||
|
|
|||
|
def calcWs(alphas,dataArr,classLabels):
|
|||
|
"""
|
|||
|
计算w
|
|||
|
Parameters:
|
|||
|
dataArr - 数据矩阵
|
|||
|
classLabels - 数据标签
|
|||
|
alphas - alphas值
|
|||
|
Returns:
|
|||
|
w - 计算得到的w
|
|||
|
"""
|
|||
|
X = np.mat(dataArr); labelMat = np.mat(classLabels).transpose()
|
|||
|
m,n = np.shape(X)
|
|||
|
w = np.zeros((n,1))
|
|||
|
for i in range(m):
|
|||
|
w += np.multiply(alphas[i]*labelMat[i],X[i,:].T)
|
|||
|
return w
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
dataArr, classLabels = loadDataSet('testSet.txt')
|
|||
|
b, alphas = smoP(dataArr, classLabels, 0.6, 0.001, 40)
|
|||
|
w = calcWs(alphas,dataArr, classLabels)
|
|||
|
showClassifer(dataArr, classLabels, w, b)
|