This repository has been archived on 2020-04-25. You can view files and clone it, but cannot push or open issues or pull requests.
ml/regression/abalone.py

140 lines
4.0 KiB
Python
Raw Normal View History

2020-02-23 14:14:06 +00:00
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import numpy as np
def loadDataSet(fileName):
"""
函数说明:加载数据
Parameters:
fileName - 文件名
Returns:
xArr - x数据集
yArr - y数据集
Website:
http://www.cuijiahua.com/
Modify:
2017-11-19
"""
numFeat = len(open(fileName).readline().split('\t')) - 1
xArr = []; yArr = []
fr = open(fileName)
for line in fr.readlines():
lineArr =[]
curLine = line.strip().split('\t')
for i in range(numFeat):
lineArr.append(float(curLine[i]))
xArr.append(lineArr)
yArr.append(float(curLine[-1]))
return xArr, yArr
def lwlr(testPoint, xArr, yArr, k = 1.0):
"""
函数说明:使用局部加权线性回归计算回归系数w
Parameters:
testPoint - 测试样本点
xArr - x数据集
yArr - y数据集
k - 高斯核的k,自定义参数
Returns:
ws - 回归系数
Website:
http://www.cuijiahua.com/
Modify:
2017-11-19
"""
xMat = np.mat(xArr); yMat = np.mat(yArr).T
m = np.shape(xMat)[0]
weights = np.mat(np.eye((m))) #创建权重对角矩阵
for j in range(m): #遍历数据集计算每个样本的权重
diffMat = testPoint - xMat[j, :]
weights[j, j] = np.exp(diffMat * diffMat.T/(-2.0 * k**2))
xTx = xMat.T * (weights * xMat)
if np.linalg.det(xTx) == 0.0:
print("矩阵为奇异矩阵,不能求逆")
return
ws = xTx.I * (xMat.T * (weights * yMat)) #计算回归系数
return testPoint * ws
def lwlrTest(testArr, xArr, yArr, k=1.0):
"""
函数说明:局部加权线性回归测试
Parameters:
testArr - 测试数据集,测试集
xArr - x数据集,训练集
yArr - y数据集,训练集
k - 高斯核的k,自定义参数
Returns:
ws - 回归系数
Website:
http://www.cuijiahua.com/
Modify:
2017-11-19
"""
m = np.shape(testArr)[0] #计算测试数据集大小
yHat = np.zeros(m)
for i in range(m): #对每个样本点进行预测
yHat[i] = lwlr(testArr[i],xArr,yArr,k)
return yHat
def standRegres(xArr,yArr):
"""
函数说明:计算回归系数w
Parameters:
xArr - x数据集
yArr - y数据集
Returns:
ws - 回归系数
Website:
http://www.cuijiahua.com/
Modify:
2017-11-19
"""
xMat = np.mat(xArr); yMat = np.mat(yArr).T
xTx = xMat.T * xMat #根据文中推导的公示计算回归系数
if np.linalg.det(xTx) == 0.0:
print("矩阵为奇异矩阵,不能求逆")
return
ws = xTx.I * (xMat.T*yMat)
return ws
def rssError(yArr, yHatArr):
"""
误差大小评价函数
Parameters:
yArr - 真实数据
yHatArr - 预测数据
Returns:
误差大小
"""
return ((yArr - yHatArr) **2).sum()
if __name__ == '__main__':
abX, abY = loadDataSet('abalone.txt')
print('训练集与测试集相同:局部加权线性回归,核k的大小对预测的影响:')
yHat01 = lwlrTest(abX[0:99], abX[0:99], abY[0:99], 0.1)
yHat1 = lwlrTest(abX[0:99], abX[0:99], abY[0:99], 1)
yHat10 = lwlrTest(abX[0:99], abX[0:99], abY[0:99], 10)
print('k=0.1时,误差大小为:',rssError(abY[0:99], yHat01.T))
print('k=1 时,误差大小为:',rssError(abY[0:99], yHat1.T))
print('k=10 时,误差大小为:',rssError(abY[0:99], yHat10.T))
print('')
print('训练集与测试集不同:局部加权线性回归,核k的大小是越小越好吗更换数据集,测试结果如下:')
yHat01 = lwlrTest(abX[100:199], abX[0:99], abY[0:99], 0.1)
yHat1 = lwlrTest(abX[100:199], abX[0:99], abY[0:99], 1)
yHat10 = lwlrTest(abX[100:199], abX[0:99], abY[0:99], 10)
print('k=0.1时,误差大小为:',rssError(abY[100:199], yHat01.T))
print('k=1 时,误差大小为:',rssError(abY[100:199], yHat1.T))
print('k=10 时,误差大小为:',rssError(abY[100:199], yHat10.T))
print('')
print('训练集与测试集不同:简单的线性归回与k=1时的局部加权线性回归对比:')
print('k=1时,误差大小为:', rssError(abY[100:199], yHat1.T))
ws = standRegres(abX[0:99], abY[0:99])
yHat = np.mat(abX[100:199]) * ws
print('简单的线性回归误差大小:', rssError(abY[100:199], yHat.T.A))