This repository has been archived on 2020-04-25. You can view files and clone it, but cannot push or open issues or pull requests.
ml/svm/svm-svc.py

91 lines
2.5 KiB
Python
Raw Normal View History

2020-02-23 14:14:06 +00:00
# -*- coding: UTF-8 -*-
import numpy as np
import operator
from os import listdir
from sklearn.svm import SVC
"""
Author:
Jack Cui
Blog:
http://blog.csdn.net/c406495762
Zhihu:
https://www.zhihu.com/people/Jack--Cui/
Modify:
2017-10-04
"""
def img2vector(filename):
"""
将32x32的二进制图像转换为1x1024向量
Parameters:
filename - 文件名
Returns:
returnVect - 返回的二进制图像的1x1024向量
"""
#创建1x1024零向量
returnVect = np.zeros((1, 1024))
#打开文件
fr = open(filename)
#按行读取
for i in range(32):
#读一行数据
lineStr = fr.readline()
#每一行的前32个元素依次添加到returnVect中
for j in range(32):
returnVect[0, 32*i+j] = int(lineStr[j])
#返回转换后的1x1024向量
return returnVect
def handwritingClassTest():
"""
手写数字分类测试
Parameters:
Returns:
"""
#测试集的Labels
hwLabels = []
#返回trainingDigits目录下的文件名
trainingFileList = listdir('trainingDigits')
#返回文件夹下文件的个数
m = len(trainingFileList)
#初始化训练的Mat矩阵,测试集
trainingMat = np.zeros((m, 1024))
#从文件名中解析出训练集的类别
for i in range(m):
#获得文件的名字
fileNameStr = trainingFileList[i]
#获得分类的数字
classNumber = int(fileNameStr.split('_')[0])
#将获得的类别添加到hwLabels中
hwLabels.append(classNumber)
#将每一个文件的1x1024数据存储到trainingMat矩阵中
trainingMat[i,:] = img2vector('trainingDigits/%s' % (fileNameStr))
clf = SVC(C=200,kernel='rbf')
clf.fit(trainingMat,hwLabels)
#返回testDigits目录下的文件列表
testFileList = listdir('testDigits')
#错误检测计数
errorCount = 0.0
#测试数据的数量
mTest = len(testFileList)
#从文件中解析出测试集的类别并进行分类测试
for i in range(mTest):
#获得文件的名字
fileNameStr = testFileList[i]
#获得分类的数字
classNumber = int(fileNameStr.split('_')[0])
#获得测试集的1x1024向量,用于训练
vectorUnderTest = img2vector('testDigits/%s' % (fileNameStr))
#获得预测结果
# classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
classifierResult = clf.predict(vectorUnderTest)
print("分类返回结果为%d\t真实结果为%d" % (classifierResult, classNumber))
if(classifierResult != classNumber):
errorCount += 1.0
print("总共错了%d个数据\n错误率为%f%%" % (errorCount, errorCount/mTest * 100))
if __name__ == '__main__':
handwritingClassTest()