199 lines
5.8 KiB
Python
Executable File
199 lines
5.8 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- coding:utf-8 -*-
|
|
from matplotlib.font_manager import FontProperties
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
def loadDataSet(fileName):
|
|
"""
|
|
函数说明:加载数据
|
|
Parameters:
|
|
fileName - 文件名
|
|
Returns:
|
|
xArr - x数据集
|
|
yArr - y数据集
|
|
Website:
|
|
http://www.cuijiahua.com/
|
|
Modify:
|
|
2017-11-12
|
|
"""
|
|
numFeat = len(open(fileName).readline().split('\t')) - 1
|
|
xArr = []; yArr = []
|
|
fr = open(fileName)
|
|
for line in fr.readlines():
|
|
lineArr =[]
|
|
curLine = line.strip().split('\t')
|
|
for i in range(numFeat):
|
|
lineArr.append(float(curLine[i]))
|
|
xArr.append(lineArr)
|
|
yArr.append(float(curLine[-1]))
|
|
return xArr, yArr
|
|
|
|
def standRegres(xArr,yArr):
|
|
"""
|
|
函数说明:计算回归系数w
|
|
Parameters:
|
|
xArr - x数据集
|
|
yArr - y数据集
|
|
Returns:
|
|
ws - 回归系数
|
|
Website:
|
|
http://www.cuijiahua.com/
|
|
Modify:
|
|
2017-11-12
|
|
"""
|
|
xMat = np.mat(xArr); yMat = np.mat(yArr).T
|
|
xTx = xMat.T * xMat #根据文中推导的公示计算回归系数
|
|
if np.linalg.det(xTx) == 0.0:
|
|
print("矩阵为奇异矩阵,不能求逆")
|
|
return
|
|
ws = xTx.I * (xMat.T*yMat)
|
|
return ws
|
|
|
|
|
|
def plotDataSet():
|
|
"""
|
|
函数说明:绘制数据集
|
|
Parameters:
|
|
无
|
|
Returns:
|
|
无
|
|
Website:
|
|
http://www.cuijiahua.com/
|
|
Modify:
|
|
2017-11-12
|
|
"""
|
|
xArr, yArr = loadDataSet('ex0.txt') #加载数据集
|
|
n = len(xArr) #数据个数
|
|
xcord = []; ycord = [] #样本点
|
|
for i in range(n):
|
|
xcord.append(xArr[i][1]); ycord.append(yArr[i]) #样本点
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(111) #添加subplot
|
|
ax.scatter(xcord, ycord, s = 20, c = 'blue',alpha = .5) #绘制样本点
|
|
plt.title('DataSet') #绘制title
|
|
plt.xlabel('X')
|
|
plt.show()
|
|
|
|
def plotRegression():
|
|
"""
|
|
函数说明:绘制回归曲线和数据点
|
|
Parameters:
|
|
无
|
|
Returns:
|
|
无
|
|
Website:
|
|
http://www.cuijiahua.com/
|
|
Modify:
|
|
2017-11-12
|
|
"""
|
|
xArr, yArr = loadDataSet('ex0.txt') #加载数据集
|
|
ws = standRegres(xArr, yArr) #计算回归系数
|
|
xMat = np.mat(xArr) #创建xMat矩阵
|
|
yMat = np.mat(yArr) #创建yMat矩阵
|
|
xCopy = xMat.copy() #深拷贝xMat矩阵
|
|
xCopy.sort(0) #排序
|
|
yHat = xCopy * ws #计算对应的y值
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(111) #添加subplot
|
|
ax.plot(xCopy[:, 1], yHat, c = 'red') #绘制回归曲线
|
|
ax.scatter(xMat[:,1].flatten().A[0], yMat.flatten().A[0], s = 20, c = 'blue',alpha = .5) #绘制样本点
|
|
plt.title('DataSet') #绘制title
|
|
plt.xlabel('X')
|
|
plt.show()
|
|
|
|
def plotlwlrRegression():
|
|
"""
|
|
函数说明:绘制多条局部加权回归曲线
|
|
Parameters:
|
|
无
|
|
Returns:
|
|
无
|
|
Website:
|
|
http://www.cuijiahua.com/
|
|
Modify:
|
|
2017-11-15
|
|
"""
|
|
#font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)
|
|
xArr, yArr = loadDataSet('ex0.txt') #加载数据集
|
|
yHat_1 = lwlrTest(xArr, xArr, yArr, 1.0) #根据局部加权线性回归计算yHat
|
|
yHat_2 = lwlrTest(xArr, xArr, yArr, 0.01) #根据局部加权线性回归计算yHat
|
|
yHat_3 = lwlrTest(xArr, xArr, yArr, 0.003) #根据局部加权线性回归计算yHat
|
|
xMat = np.mat(xArr) #创建xMat矩阵
|
|
yMat = np.mat(yArr) #创建yMat矩阵
|
|
srtInd = xMat[:, 1].argsort(0) #排序,返回索引值
|
|
xSort = xMat[srtInd][:,0,:]
|
|
fig, axs = plt.subplots(nrows=3, ncols=1,sharex=False, sharey=False, figsize=(10,8))
|
|
|
|
axs[0].plot(xSort[:, 1], yHat_1[srtInd], c = 'red') #绘制回归曲线
|
|
axs[1].plot(xSort[:, 1], yHat_2[srtInd], c = 'red') #绘制回归曲线
|
|
axs[2].plot(xSort[:, 1], yHat_3[srtInd], c = 'red') #绘制回归曲线
|
|
axs[0].scatter(xMat[:,1].flatten().A[0], yMat.flatten().A[0], s = 20, c = 'blue', alpha = .5) #绘制样本点
|
|
axs[1].scatter(xMat[:,1].flatten().A[0], yMat.flatten().A[0], s = 20, c = 'blue', alpha = .5) #绘制样本点
|
|
axs[2].scatter(xMat[:,1].flatten().A[0], yMat.flatten().A[0], s = 20, c = 'blue', alpha = .5) #绘制样本点
|
|
|
|
#设置标题,x轴label,y轴label
|
|
axs0_title_text = axs[0].set_title(u'Locally weighted regression curve,k=1.0')
|
|
axs1_title_text = axs[1].set_title(u'Locally weighted regression curve,k=0.01')
|
|
axs2_title_text = axs[2].set_title(u'Locally weighted regression curve,k=0.003')
|
|
|
|
plt.setp(axs0_title_text, size=8, weight='bold', color='red')
|
|
plt.setp(axs1_title_text, size=8, weight='bold', color='red')
|
|
plt.setp(axs2_title_text, size=8, weight='bold', color='red')
|
|
|
|
plt.xlabel('X')
|
|
plt.show()
|
|
|
|
def lwlr(testPoint, xArr, yArr, k = 1.0):
|
|
"""
|
|
函数说明:使用局部加权线性回归计算回归系数w
|
|
Parameters:
|
|
testPoint - 测试样本点
|
|
xArr - x数据集
|
|
yArr - y数据集
|
|
k - 高斯核的k,自定义参数
|
|
Returns:
|
|
ws - 回归系数
|
|
Website:
|
|
http://www.cuijiahua.com/
|
|
Modify:
|
|
2017-11-15
|
|
"""
|
|
xMat = np.mat(xArr); yMat = np.mat(yArr).T
|
|
m = np.shape(xMat)[0]
|
|
weights = np.mat(np.eye((m))) #创建权重对角矩阵
|
|
for j in range(m): #遍历数据集计算每个样本的权重
|
|
diffMat = testPoint - xMat[j, :]
|
|
weights[j, j] = np.exp(diffMat * diffMat.T/(-2.0 * k**2))
|
|
xTx = xMat.T * (weights * xMat)
|
|
if np.linalg.det(xTx) == 0.0:
|
|
print("矩阵为奇异矩阵,不能求逆")
|
|
return
|
|
ws = xTx.I * (xMat.T * (weights * yMat)) #计算回归系数
|
|
return testPoint * ws
|
|
|
|
def lwlrTest(testArr, xArr, yArr, k=1.0):
|
|
"""
|
|
函数说明:局部加权线性回归测试
|
|
Parameters:
|
|
testArr - 测试数据集
|
|
xArr - x数据集
|
|
yArr - y数据集
|
|
k - 高斯核的k,自定义参数
|
|
Returns:
|
|
ws - 回归系数
|
|
Website:
|
|
http://www.cuijiahua.com/
|
|
Modify:
|
|
2017-11-15
|
|
"""
|
|
m = np.shape(testArr)[0] #计算测试数据集大小
|
|
yHat = np.zeros(m)
|
|
for i in range(m): #对每个样本点进行预测
|
|
yHat[i] = lwlr(testArr[i],xArr,yArr,k)
|
|
return yHat
|
|
|
|
|
|
if __name__ == '__main__':
|
|
plotlwlrRegression()
|