91 lines
2.5 KiB
Python
Executable File
91 lines
2.5 KiB
Python
Executable File
# -*- coding: UTF-8 -*-
|
|
import numpy as np
|
|
import operator
|
|
from os import listdir
|
|
from sklearn.svm import SVC
|
|
|
|
"""
|
|
Author:
|
|
Jack Cui
|
|
Blog:
|
|
http://blog.csdn.net/c406495762
|
|
Zhihu:
|
|
https://www.zhihu.com/people/Jack--Cui/
|
|
Modify:
|
|
2017-10-04
|
|
"""
|
|
|
|
def img2vector(filename):
|
|
"""
|
|
将32x32的二进制图像转换为1x1024向量。
|
|
Parameters:
|
|
filename - 文件名
|
|
Returns:
|
|
returnVect - 返回的二进制图像的1x1024向量
|
|
"""
|
|
#创建1x1024零向量
|
|
returnVect = np.zeros((1, 1024))
|
|
#打开文件
|
|
fr = open(filename)
|
|
#按行读取
|
|
for i in range(32):
|
|
#读一行数据
|
|
lineStr = fr.readline()
|
|
#每一行的前32个元素依次添加到returnVect中
|
|
for j in range(32):
|
|
returnVect[0, 32*i+j] = int(lineStr[j])
|
|
#返回转换后的1x1024向量
|
|
return returnVect
|
|
|
|
def handwritingClassTest():
|
|
"""
|
|
手写数字分类测试
|
|
Parameters:
|
|
无
|
|
Returns:
|
|
无
|
|
"""
|
|
#测试集的Labels
|
|
hwLabels = []
|
|
#返回trainingDigits目录下的文件名
|
|
trainingFileList = listdir('trainingDigits')
|
|
#返回文件夹下文件的个数
|
|
m = len(trainingFileList)
|
|
#初始化训练的Mat矩阵,测试集
|
|
trainingMat = np.zeros((m, 1024))
|
|
#从文件名中解析出训练集的类别
|
|
for i in range(m):
|
|
#获得文件的名字
|
|
fileNameStr = trainingFileList[i]
|
|
#获得分类的数字
|
|
classNumber = int(fileNameStr.split('_')[0])
|
|
#将获得的类别添加到hwLabels中
|
|
hwLabels.append(classNumber)
|
|
#将每一个文件的1x1024数据存储到trainingMat矩阵中
|
|
trainingMat[i,:] = img2vector('trainingDigits/%s' % (fileNameStr))
|
|
clf = SVC(C=200,kernel='rbf')
|
|
clf.fit(trainingMat,hwLabels)
|
|
#返回testDigits目录下的文件列表
|
|
testFileList = listdir('testDigits')
|
|
#错误检测计数
|
|
errorCount = 0.0
|
|
#测试数据的数量
|
|
mTest = len(testFileList)
|
|
#从文件中解析出测试集的类别并进行分类测试
|
|
for i in range(mTest):
|
|
#获得文件的名字
|
|
fileNameStr = testFileList[i]
|
|
#获得分类的数字
|
|
classNumber = int(fileNameStr.split('_')[0])
|
|
#获得测试集的1x1024向量,用于训练
|
|
vectorUnderTest = img2vector('testDigits/%s' % (fileNameStr))
|
|
#获得预测结果
|
|
# classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
|
|
classifierResult = clf.predict(vectorUnderTest)
|
|
print("分类返回结果为%d\t真实结果为%d" % (classifierResult, classNumber))
|
|
if(classifierResult != classNumber):
|
|
errorCount += 1.0
|
|
print("总共错了%d个数据\n错误率为%f%%" % (errorCount, errorCount/mTest * 100))
|
|
|
|
if __name__ == '__main__':
|
|
handwritingClassTest() |