This repository has been archived on 2020-04-25. You can view files and clone it, but cannot push or open issues or pull requests.
ml/svm/svmMLiA.py
2020-02-23 22:14:06 +08:00

313 lines
11 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*-coding:utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import random
"""
Author:
Jack Cui
Blog:
http://blog.csdn.net/c406495762
Zhihu:
https://www.zhihu.com/people/Jack--Cui/
Modify:
2017-10-03
"""
class optStruct:
"""
数据结构,维护所有需要操作的值
Parameters
dataMatIn - 数据矩阵
classLabels - 数据标签
C - 松弛变量
toler - 容错率
kTup - 包含核函数信息的元组,第一个参数存放核函数类别,第二个参数存放必要的核函数需要用到的参数
"""
def __init__(self, dataMatIn, classLabels, C, toler, kTup):
self.X = dataMatIn #数据矩阵
self.labelMat = classLabels #数据标签
self.C = C #松弛变量
self.tol = toler #容错率
self.m = np.shape(dataMatIn)[0] #数据矩阵行数
self.alphas = np.mat(np.zeros((self.m,1))) #根据矩阵行数初始化alpha参数为0
self.b = 0 #初始化b参数为0
self.eCache = np.mat(np.zeros((self.m,2))) #根据矩阵行数初始化虎误差缓存第一列为是否有效的标志位第二列为实际的误差E的值。
self.K = np.mat(np.zeros((self.m,self.m))) #初始化核K
for i in range(self.m): #计算所有数据的核K
self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
def kernelTrans(X, A, kTup):
"""
通过核函数将数据转换更高维的空间
Parameters
X - 数据矩阵
A - 单个数据的向量
kTup - 包含核函数信息的元组
Returns:
K - 计算的核K
"""
m,n = np.shape(X)
K = np.mat(np.zeros((m,1)))
if kTup[0] == 'lin': K = X * A.T #线性核函数,只进行内积。
elif kTup[0] == 'rbf': #高斯核函数,根据高斯核函数公式进行计算
for j in range(m):
deltaRow = X[j,:] - A
K[j] = deltaRow*deltaRow.T
K = np.exp(K/(-1*kTup[1]**2)) #计算高斯核K
else: raise NameError('核函数无法识别')
return K #返回计算的核K
def loadDataSet(fileName):
"""
读取数据
Parameters:
fileName - 文件名
Returns:
dataMat - 数据矩阵
labelMat - 数据标签
"""
dataMat = []; labelMat = []
fr = open(fileName)
for line in fr.readlines(): #逐行读取,滤除空格等
lineArr = line.strip().split('\t')
dataMat.append([float(lineArr[0]), float(lineArr[1])]) #添加数据
labelMat.append(float(lineArr[2])) #添加标签
return dataMat,labelMat
def calcEk(oS, k):
"""
计算误差
Parameters
oS - 数据结构
k - 标号为k的数据
Returns:
Ek - 标号为k的数据误差
"""
fXk = float(np.multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
Ek = fXk - float(oS.labelMat[k])
return Ek
def selectJrand(i, m):
"""
函数说明:随机选择alpha_j的索引值
Parameters:
i - alpha_i的索引值
m - alpha参数个数
Returns:
j - alpha_j的索引值
"""
j = i #选择一个不等于i的j
while (j == i):
j = int(random.uniform(0, m))
return j
def selectJ(i, oS, Ei):
"""
内循环启发方式2
Parameters
i - 标号为i的数据的索引值
oS - 数据结构
Ei - 标号为i的数据误差
Returns:
j, maxK - 标号为j或maxK的数据的索引值
Ej - 标号为j的数据误差
"""
maxK = -1; maxDeltaE = 0; Ej = 0 #初始化
oS.eCache[i] = [1,Ei] #根据Ei更新误差缓存
validEcacheList = np.nonzero(oS.eCache[:,0].A)[0] #返回误差不为0的数据的索引值
if (len(validEcacheList)) > 1: #有不为0的误差
for k in validEcacheList: #遍历,找到最大的Ek
if k == i: continue #不计算i,浪费时间
Ek = calcEk(oS, k) #计算Ek
deltaE = abs(Ei - Ek) #计算|Ei-Ek|
if (deltaE > maxDeltaE): #找到maxDeltaE
maxK = k; maxDeltaE = deltaE; Ej = Ek
return maxK, Ej #返回maxK,Ej
else: #没有不为0的误差
j = selectJrand(i, oS.m) #随机选择alpha_j的索引值
Ej = calcEk(oS, j) #计算Ej
return j, Ej #j,Ej
def updateEk(oS, k):
"""
计算Ek,并更新误差缓存
Parameters
oS - 数据结构
k - 标号为k的数据的索引值
Returns:
"""
Ek = calcEk(oS, k) #计算Ek
oS.eCache[k] = [1,Ek] #更新误差缓存
def clipAlpha(aj,H,L):
"""
修剪alpha_j
Parameters:
aj - alpha_j的值
H - alpha上限
L - alpha下限
Returns:
aj - 修剪后的alpah_j的值
"""
if aj > H:
aj = H
if L > aj:
aj = L
return aj
def innerL(i, oS):
"""
优化的SMO算法
Parameters
i - 标号为i的数据的索引值
oS - 数据结构
Returns:
1 - 有任意一对alpha值发生变化
0 - 没有任意一对alpha值发生变化或变化太小
"""
#步骤1计算误差Ei
Ei = calcEk(oS, i)
#优化alpha,设定一定的容错率。
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
#使用内循环启发方式2选择alpha_j,并计算Ej
j,Ej = selectJ(i, oS, Ei)
#保存更新前的aplpha值使用深拷贝
alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
#步骤2计算上下界L和H
if (oS.labelMat[i] != oS.labelMat[j]):
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if L == H:
print("L==H")
return 0
#步骤3计算eta
eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j]
if eta >= 0:
print("eta>=0")
return 0
#步骤4更新alpha_j
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej)/eta
#步骤5修剪alpha_j
oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
#更新Ej至误差缓存
updateEk(oS, j)
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
print("alpha_j变化太小")
return 0
#步骤6更新alpha_i
oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
#更新Ei至误差缓存
updateEk(oS, i)
#步骤7更新b_1和b_2
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
#步骤8根据b_1和b_2更新b
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
else: oS.b = (b1 + b2)/2.0
return 1
else:
return 0
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup = ('lin',0)):
"""
完整的线性SMO算法
Parameters
dataMatIn - 数据矩阵
classLabels - 数据标签
C - 松弛变量
toler - 容错率
maxIter - 最大迭代次数
kTup - 包含核函数信息的元组
Returns:
oS.b - SMO算法计算的b
oS.alphas - SMO算法计算的alphas
"""
oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler, kTup) #初始化数据结构
iter = 0 #初始化当前迭代次数
entireSet = True; alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): #遍历整个数据集都alpha也没有更新或者超过最大迭代次数,则退出循环
alphaPairsChanged = 0
if entireSet: #遍历整个数据集
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS) #使用优化的SMO算法
print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
iter += 1
else: #遍历非边界值
nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] #遍历不在边界0和C的alpha
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS)
print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
iter += 1
if entireSet: #遍历一次后改为非边界遍历
entireSet = False
elif (alphaPairsChanged == 0): #如果alpha没有更新,计算全样本遍历
entireSet = True
print("迭代次数: %d" % iter)
return oS.b,oS.alphas #返回SMO算法计算的b和alphas
def testRbf(k1 = 1.3):
"""
测试函数
Parameters:
k1 - 使用高斯核函数的时候表示到达率
Returns:
"""
dataArr,labelArr = loadDataSet('testSetRBF.txt') #加载训练集
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 100, ('rbf', k1)) #根据训练集计算b和alphas
datMat = np.mat(dataArr); labelMat = np.mat(labelArr).transpose()
svInd = np.nonzero(alphas.A > 0)[0] #获得支持向量
sVs = datMat[svInd]
labelSV = labelMat[svInd];
print("支持向量个数:%d" % np.shape(sVs)[0])
m,n = np.shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) #计算各个点的核
predict = kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b #根据支持向量的点,计算超平面,返回预测结果
if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1 #返回数组中各元素的正负符号用1和-1表示并统计错误个数
print("训练集错误率: %.2f%%" % ((float(errorCount)/m)*100)) #打印错误率
dataArr,labelArr = loadDataSet('testSetRBF2.txt') #加载测试集
errorCount = 0
datMat = np.mat(dataArr); labelMat = np.mat(labelArr).transpose()
m,n = np.shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) #计算各个点的核
predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b #根据支持向量的点,计算超平面,返回预测结果
if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1 #返回数组中各元素的正负符号用1和-1表示并统计错误个数
print("测试集错误率: %.2f%%" % ((float(errorCount)/m)*100)) #打印错误率
def showDataSet(dataMat, labelMat):
"""
数据可视化
Parameters:
dataMat - 数据矩阵
labelMat - 数据标签
Returns:
"""
data_plus = [] #正样本
data_minus = [] #负样本
for i in range(len(dataMat)):
if labelMat[i] > 0:
data_plus.append(dataMat[i])
else:
data_minus.append(dataMat[i])
data_plus_np = np.array(data_plus) #转换为numpy矩阵
data_minus_np = np.array(data_minus) #转换为numpy矩阵
plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1]) #正样本散点图
plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1]) #负样本散点图
plt.show()
if __name__ == '__main__':
testRbf()